Matrices
GeoGebra también opera con matrices reales, representadas como una lista de listas, que contiene las filas de la matriz.
a = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} representa la matriz a de 3x3:
FórmulaTexto[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9} }]
para exponer la matriz usando formato LaTeX.Operaciones con Matrices
Sumas y Restas - Ejemplos
- Matriz1 + Matriz2: Suma uno a uno, cada par de elementos correspondientes de una y otra matriz.
- Matriz1 – Matriz2: Resta uno a uno, cada par de elementos correspondientes de una y otra matriz, entre dos compatibles entre sí.
Multiplicación - Ejemplos
- Matriz * Número: Multiplica por el número, cada uno de los elementos de la matriz.
- Matriz1 * Matriz2: Usa la multiplicación de matrices para calcular la resultante.
- Nota: Las filas de la primera y las columnas de la segunda matriz deben tener el mismo número de elementos.
- Ejemplo: {{1,2},{3,4},{5,6}}*{{1,2,3},{4,5,6}} da por resultado la matriz {{9, 12, 15}, {19, 26, 33}, {29, 40, 51}}.
- 2x2 Matriz * Punto (o Vector): Multiplica la matriz por el punto o vector y da por resultado un punto
- 3x3 Matriz * Punto (o Vector): Multiplica la matriz por el punto o vector y da por resultado un punto.
- Ejemplos:
- {{1, 2}, {3, 4}, {5, 6}} * {{1, 2, 3}, {4, 5, 6}} da por resultado la matriz {{9, 12, 15}, {19, 26, 33}, {29, 40, 51}}
- {{1, 2}, {3, 4}} * (3, 4) da por resultado el punto A = (11, 25).
- {{1, 2, 3}, {4, 5, 6}, {0, 0, 1}} * (1, 2) da por resultado el punto A = (8, 20).
- Nota: Este es un caso especial de transformaciones afines donde las coordenadas homogéneas se usan: (x, y, 1) para un punto y (x, y, 0) por un vector. Este último ejemplo es, por lo tanto, equivalente a:
{{1, 2, 3}, {4, 5, 6}, {0, 0, 1}} * {1, 2, 1}
.
Profundizando
Ver también en la sección Comandos de Vectores y Matrices...
- Determinante[Matriz]: Calcula el determinante de la matriz dada.
- Inversa[Matriz]: Invierte la matriz dada.
- Traspone[Matriz]: Traspone la matriz dada.
- AplicaMatriz[Matriz, Objeto]: Aplica la transformación afín propio de la matriz al objeto.
- EscalonadaReducida[Matriz]: Convierte la matriz a la forma reducida escalonada por fila.
Interacción Algebra <=> Hoja de Cálculos
Tablas y Matrices
- ([File
- Algebraica a Hoja II.PNG|420px|left)]
A => HC : Una matriz algebraica, puede incorporarse en la Hoja de Cálculo arrastrándola hacia allí mientras se pulsa la tecla Ctrl.
Si se establece dependiente , todo cambio en la matriz de partida repercutirá en la incrustada en la Hoja de Cálculo, dinámicamente. Para que esto no ocurra, se la debe establecer como Objeto Libre
Se puede copiar la Transposición de la matriz original.
- ([File
- De Hoja a Matriz Algebraica.PNG|430px|left)]
HC => A: Todo rango rectangular de celdas seleccionado en la Hoja de Cálculo, tras optar por la alternativa Crea > Matriz del Menú Contextual desplegado por un clic derecho, la registra como objeto dinámicamente dependiente. De este modo, cualquier cambio en el original rango de celdas de la hoja de cálculo, se refleja en la matriz.
Siendo l_a :=
Secuencia[BinomialAleatorio[3, 0.1], ñ, 1, 1000, Mínimo[Máximo[AleatorioEntre[1, exF], 1], 1]]
la lista de registro algebraico, copiando a la Hoja de Cálculo, sendas listas lo y lf definidas como:lo :=
Ordena[Único[la]]
y lf := Zip[CuentaSi[x ≟ ñ, l_a], ñ, {0,1,2,3}]
, cundo se selecciona el rango de celdas en que se volcaron ambas listas y se crea la correspondiente matriz, se obtiene una dinámica y aleatoriamente cambiante con cada pulsación de F9