Comando Integral

De GeoGebra Manual
Saltar a: navegación, buscar



Integral( <Función> )
Da como resultado la integral indefinida con respecto a la variable principal.
Ejemplo: Integral(x^3) devuelve x^4 \cdot 0.25.
Integral( <Función>, <Variable> )
Da como resultado la integral con respecto a la variable indicada.
Ejemplo: Integral(x³+3x y, x) devuelve \frac{1}{4}x^4 + \frac{3}{2} x² y .
Integral( <Función>, <Extremo inferior del intervalo>, <Extremo superior del intervalo> )
Da como resultado la integral definida en el intervalo [Extremo inferior del intervalo , Extremo superior del intervalo] con respecto a la variable principal.
Nota: Este comando también sombrea el área entre la gráfica de la función y el eje x.
Integral( <Función>, <Extremo inferior del intervalo>, <Extremo superior del intervalo>, <Evaluar o no ((true)/(false))>)
Da como resultado la integral definida en el intervalo [Extremo inferior del intervalo , Extremo superior del intervalo] con respecto a la variable principal y sombrea la región relacionada si Evaluar o no tiene como valor true (verdadero. En caso de que Evaluar o no sea false (falso) la región relacionada se sombrea, pero el valor de la integral no se calcula.

Sintaxis CAS

En la Menu view cas.svg Vista CAS las variables indeterminadas también son permitidas como entradas.

Ejemplo: Integral(cos(a t), t) da por resultado \frac{sen(a t)}{a} + c_1.

Además, el siguiente comando solamente está disponible en la Menu view cas.svg Vista CAS:

Integral( <Función>, <Variable>, <Extremo inferior del intervalo>, <Extremo superior del intervalo> )
Da como resultado la integral definida en el intervalo [Extremo inferior del intervalo, Extremo superior del intervalo] con respecto a la variable indicada.
Ejemplo: Integral(cos(t), t, a, b) da por resultado - sen(a) + sen(b).
Nota:
  • No se garantiza que la solución sea continua, por ejemplo Integral(floor(x)), que es la integral de la función ⌊x⌋ - en ese caso, puedes definir tu propia función, por ejemplo F(x)=(floor(x)² - floor(x))/2 + x floor(x) - floor(x)², es decir, la función \frac{⌊x⌋² - ⌊x⌋}{2} + x \cdot⌊x⌋ - ⌊x⌋²
© 2020 International GeoGebra Institute