Comando Coeficientes

De GeoGebra Manual
Saltar a: navegación, buscar


;Coeficientes[ <Polinomio> ]:Lista los coeficientes del polinomio dado, ordenados según el grado de la variable .
Así, para el polinomio;
a_kx^k+a_{k-1}x^{k-1}+\cdots+a_1x+a_0 el resultado es la lista:
{a_k, a_{k-1}, \ldots,a_1,a_0}.

Ejemplos:

Coeficientes[x^3 - 3 x^2 + 3 x] da {1, -3, 3, 0}, la lista de todos los coeficientes del polinomio - x^3 - 3 x^2 + 3 x - incluyendo el constante que en este caso es nulo

Coeficientes[sqrt(-2) + 3 x + x^2 + 7x⁷ + 3x⁹ + x^3] da {3, 0, 7, 0, 0, 0, 1, 1, 3, ?} desde versiones que ya cuentan con Vista CAS.
El ? señala indeterminación respecto al coeficiente sqrt(-2) y a todo complejo o imaginario.
En versiones previas daba:
{3, 0, 7, 0, 0, 0, 1, 1, 3, 1.4142 ί }


Nota: Este comando se puede usar a la salida de Ajusta incluso si no se tratara de una función polinomial, para recuperar los coeficientes calculados por el ajuste.
Coeficientes[ <Cónica> ]
Lista los coeficientes, ordenados\{a, b, c, d, e, f\} según formato estándar de la cónica:

a\cdot x^2 + b\cdot y^2 + c + d\cdot x\cdot y + e\cdot x + f\cdot y = 0
Ejemplo:
Coeficientes[-39x² - 52x y - 60y² - 72x + 128y = -625] da por resultado {-39, -60, 625, -52, -72, 128}
Notas:
En la lista aparece un 0 por cada variable del correspondiente grado no presente en el polinomio o la función de la curva.

Si el coeficiente fuera un número complejo, en la versión 4.0, aparecerá en el listado con la notación correspondiente.
A partir de la versión 4.2, resultará indefinido a menos que se lo ingrese en la Vista CAS

Coeficientes de la Lineal Implícita

Note Idea: Para dar con los coeficientes a partir de la formulación implícita como l: ax + by + c = 0 basta con ingresar
x(l) y(l) y z(l) respectivamente.
Ejemplos: Siendo l: 3x + 2y - 2 = 0:

x(l) da 3
y(l), 2 y
z(l), -2
{x(l), y(l), z(l)} da {3, 2, -2}


Menu view cas.svg En la Vista ComputaciónAlgebraicaSimbólica

En esta vista se admiten literales en operaciones simbólicas, obrando del modo ya descripto para los polinomios. Pero, no se admiten cónicas.
La variante aplicada a un polinomio opera de modo análogo al descripto y se añade la alternativa exclusiva de esta vista, de poder elegir cuál es la variable.

Coeficientes( <Polinomio>, <Variable> )
Lista todos los coeficientes del polinomio ordenados según la variable indicada.
Ejemplos:

Coeficientes[a^3 - 3 a^2 + 3 a, a] da {1, -3, 3, 0}
Coeficientes[a^3 - 3 a^2 + 3 a, x] da {a3 - 3 a2 + 3 a} y
Coeficientes[a^3 x^3 - 3 a^2 x^2 + 3 a x - a, x] da {a3, -3 a2, 3 a, -a}

Resultados Específicos en CAS

Coeficientes( <Polinomio> )
Tiene sus particularidades en esta vista: todo coeficiente imaginario o complejo se establece como par ordenado y se expresa con el símbolo ί correspondiente.
Ejemplos: El resultado de Coeficientes[x² + sqrt(-1) x + sqrt(-4)] será la lista...
  • {1, ?, ?} señalando indeterminación con ? para cada coeficiente complejo o imaginario.
    Daba {1, 0 + ί, 0 + 2ί} en versiones previas.
  • {1,ί, 2 ί} en la Vista CAS

En términos generales de formulación, para...

- el polinomio po = a_kx^k+a_{k-1}x^{k-1}+\cdots+a_1x+a_0, Coeficientes[po] listaría {{a_0,a_1,\ldots,a_k} }

- la cónica co dada por a\cdot x^2 + b\cdot y^2 + c + d\cdot x\cdot y + e\cdot x + f\cdot y = 0, Coeficientes[co] da el listado \{a, b, c, d, e, f\} de los valores de tales coeficientes en la Vista Algebraicaen la Vista CAS no se admite esta sintaxis.

Ejemplo: Dada la cónica co ingresada en la Barra de Entrada como 3 x^2 + 2 y^2 + 1 + 4 x y + 5 x + 6 y = 0, el resultado de Coeficientes[c_o] será la lista {3, 2, 1, 4, 5, 6} en la Vista Algebraicaen la Vista CAS no se admite esta sintaxis
Nota: Ver también el comando Grado.
© 2020 International GeoGebra Institute