Difference between revisions of "IntegralBetween Command"

From GeoGebra Manual
Jump to: navigation, search
m (Bot: Automated text replacement (-{{command +{{command|cas=true))
Line 1: Line 1:
 
<noinclude>{{Manual Page|version=4.0}}[[Category:Manual (official)|{{PAGENAME}}]]</noinclude>
 
<noinclude>{{Manual Page|version=4.0}}[[Category:Manual (official)|{{PAGENAME}}]]</noinclude>
{{command|function}}
+
{{command|cas=true|function}}
 
;IntegralBetween[Function f, Function g, Number a, Number b]
 
;IntegralBetween[Function f, Function g, Number a, Number b]
 
:Returns the definite integral of the difference ''f(x) ‐ g(x)'' in the interval [''a, b''].
 
:Returns the definite integral of the difference ''f(x) ‐ g(x)'' in the interval [''a, b''].

Revision as of 13:52, 10 September 2011


IntegralBetween[Function f, Function g, Number a, Number b]
Returns the definite integral of the difference f(x) ‐ g(x) in the interval [a, b].
Note: This command also shades the area between the function graphs of f and g.
IntegralBetween[Function f, Function g, Number a, Number b, Boolean Evaluate]
Returns the definite integral of the difference f(x) ‐ g(x) in the interval [a, b] and shadows the related area when Evaluate = true. In case Evaluate = false the related area is shaded but the integral value is not calculated.

CAS Syntax

IntegralBetween[ Function f, Function g, Number a, Number b]
Returns the definite integral of the difference f(x) ‐ g(x) in the interval [a, b].
Example:
IntegralBetween[sin(x), cos(x), π / 4, π * 5 / 4] yields 2 \sqrt{2}.
IntegralBetween[ Function f, Function g, Variable t, Number a, Number b ]
Returns the definite integral of the difference f ‐ g in the interval [a, b] with respect to the variable t.
Example:
IntegralBetween[a * sin(t), a * cos(t), t, π / 4, π * 5 / 4] yields 2 \sqrt{2} a.
© 2021 International GeoGebra Institute