Extremum Command
|
- Extremum( <Polynomial> )
-
Yields all local extrema of the polynomial function as points on the function graph.
Extremum(x³ + 3x² - 2x + 1)
creates local extrema (0.29, 0.70) and (-2.29, 9.30) and shows them in the
Graphics
View.
- Extremum( <Function>, <Start x-Value>, <End x-Value> )
-
Calculates (numerically) the extremum of the function in the open interval ( <Start x-Value>, <End x-Value> ).
Extremum((x⁴ - 3x³ - 4x² + 4) / 2, 0, 5)
creates local extremum (2.93, -16.05) in the given interval and shows
it in the
Graphics View.
The function should be continuous in [ <Start x-Value>, <End x-Value> ], otherwise false extrema near discontinuity might be calculated. |
CAS Syntax
- Extremum( <Function> )
-
Will attempt to return all local extrema of the function (which should be continuous and differentiable)
Extremum(x³ + 3x² - 2x + 1)
creates a list of the points and plots them {(−√15−33,10√15+459),(√15−33,−10√15+459)}.
Assume(0 < x < 20, Extremum(15/2 * sin( 2/15*pi * x) + 56/5))
yields the local turning points in the range given
{(154,18710),(454,3710),(754,18710)}.