# IntegralBetween Command

From GeoGebra Manual

- IntegralBetween( <Function>, <Function>, <Number>, <Number> )
- Gives the definite integral of the difference
*f(x) ‐ g(x)*of two function*f*and*g*over the interval*[a, b]*, where*a*is the first number and*b*the second, with respect to the main variable. **Example:**`IntegralBetween(sin(x), cos(x), 0, pi)`

**Note:**This command also shades the area between the function graphs of*f*and*g*.- IntegralBetween( <Function>, <Function>, <Number>, <Number>, <Boolean Evaluate> )
- Gives the definite integral of the difference
*f(x) ‐ g(x)*of two function*f*and*g*over the interval*[a, b]*, where*a*is the first number and*b*the second, with respect to the main variable and shadows the related area if*Evaluate*is*true*. In case*Evaluate*is*false*the related area is shaded but the integral value is not calculated.

## CAS Syntax

- IntegralBetween( <Function>, <Function>, <Number>, <Number> )
- Gives the definite integral of the difference
*f(x) ‐ g(x)*of two function*f*and*g*over the interval*[a, b]*, where*a*is the first number and*b*the second, with respect to the main variable. **Example:**`IntegralBetween(sin(x), cos(x), pi / 4, pi * 5 / 4)`

yields 2 \sqrt{2}.

- IntegralBetween( <Function>, <Function>, <Variable>, <Number>, <Number> )
- Gives the definite integral of a variable of the difference
*f(x) ‐ g(x)*of two function*f*and*g*over the interval*[a, b]*, where*a*is the first number and*b*the second, with respect to the given variable. **Example:**`IntegralBetween(a * sin(t), a * cos(t), t, pi / 4, pi * 5 / 4)`

yields 2 \sqrt{2} a.