Coefficients Command
From GeoGebra Manual
- Coefficients( <Polynomial> )
- Yields the list of all coefficients a_k,a_{k-1},\ldots,a_1, a_0 of the polynomial a_kx^k+a_{k-1}x^{k-1}+\cdots+a_1x+a_0.
- Example:
Coefficients(x^3 - 3 x^2 + 3 x)
yields {1, -3, 3, 0}, the list of all coefficients of x^3 - 3 x^2 + 3 x.
- Note: There's a special mode (for non-polynomials) for the output of the fitting commands eg if
f(x) = FitExp(l1)
thenCoefficients(f)
will return the calculated parameters - Coefficients( <Conic> )
- Returns the list of the coefficients a, b, c, d, e, f of a conic in standard form: a\cdot x^2 + b\cdot y^2 + c + d\cdot x\cdot y + e\cdot x + f\cdot y = 0
- Note: For a line in implicit form l: ax + by + c = 0 it is possible to obtain the coefficients using the syntax x(l), y(l), z(l).
- Example: Given
line: 3x + 2y - 2 = 0
:x(line)
returns 3y(line)
returns 2z(line)
returns -2
CAS Syntax
- Coefficients( <Polynomial> )
- Yields the list of all coefficients of the polynomial in the main variable.
- Example:
Coefficients(x^3 - 3 x^2 + 3 x)
yields {1, -3, 3, 0}, the list of all coefficients of x^3 - 3 x^2 + 3 x.
- Coefficients( <Polynomial>, <Variable> )
- Yields the list of all coefficients of the polynomial in the given variable.
- Example:
Coefficients(a^3 - 3 a^2 + 3 a, a)
yields {1, -3, 3, 0}, the list of all coefficients of a^3 - 3 a^2 + 3 aCoefficients(a^3 - 3 a^2 + 3 a, x)
yields {a³ - 3 a² + 3 a}.