Difference between revisions of "Coefficients Command"

From GeoGebra Manual
Jump to: navigation, search
(Move to user-page)
Line 6: Line 6:
 
;Coefficients[ <Conic> ]
 
;Coefficients[ <Conic> ]
 
:For conics in standard form <math>a\cdot x^2 + b\cdot y^2 + c + d\cdot x\cdot y + e\cdot x + f\cdot y = 0</math> returns list <math>\{a, b, c, d, e, f\}</math>.
 
:For conics in standard form <math>a\cdot x^2 + b\cdot y^2 + c + d\cdot x\cdot y + e\cdot x + f\cdot y = 0</math> returns list <math>\{a, b, c, d, e, f\}</math>.
 
 
:{{hint|1=For a line in implicit form <math>l: ax + by + c = 0</math> it is possible to obtain the coefficients using the syntax <math>x(l), y(l), z(l)</math>.
 
::{{example|1= Given <code>l: 3x + 2y - 2 = 0</code>:
 
:::<code>x(''l'')</code> returns 3,
 
:::<code>y(''l'')</code> returns 2 and
 
:::<code>z(''l'')</code> returns -2.}} }}
 
  
  

Revision as of 18:35, 25 September 2012



Coefficients[ <Polynomial> ]
Yields the list of all coefficients of the polynomial.
Example:
Coefficients[x^3 - 3 x^2 + 3 x] yields {1, -3, 3, 0}, the list of all coefficients of x^3 - 3 x^2 + 3 x.
Coefficients[ <Conic> ]
For conics in standard form a\cdot x^2 + b\cdot y^2 + c + d\cdot x\cdot y + e\cdot x + f\cdot y = 0 returns list \{a, b, c, d, e, f\}.


CAS Syntax

Coefficients[ <Polynomial> ]
Yields the list of all coefficients of the polynomial in the main variable.
Example:
Coefficients[x^3 - 3 x^2 + 3 x] yields {1, -3, 3, 0}, the list of all coefficients of x^3 - 3 x^2 + 3 x.
Coefficients[ <Polynomial>, <Variable> ]
Yields the list of all coefficients of the polynomial in the given variable.
Example:
  • Coefficients[a^3 - 3 a^2 + 3 a, a] yields {1, -3, 3, 0}, the list of all coefficients of a^3 - 3 a^2 + 3 a, and
  • Coefficients[a^3 - 3 a^2 + 3 a, x] yields \{a^3 - 3 a^2 + 3 a\}.
© 2022 International GeoGebra Institute