Difference between revisions of "Conic Command"

From GeoGebra Manual
Jump to: navigation, search
(Undo revision 34989 by JohannaZ (talk))
(Add Conic(list))
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<noinclude>{{Manual Page|version=4.2}}</noinclude>
+
<noinclude>{{Manual Page|version=5.0}}</noinclude>{{command|conic}}
{{command|conic}}
+
; Conic( <Point>, <Point>, <Point>, <Point>, <Point> )
; Conic[ <Point>, <Point>, <Point>, <Point>, <Point> ]
 
 
:Returns a conic section through the five given points.
 
:Returns a conic section through the five given points.
: {{Note| If four of the points lie on one line the conic section is not defined.}}
+
:{{example|1=<code><nowiki>Conic((0, -4), (2, 4), (3,1), (-2,3), (-3,-1))</nowiki></code> yields ''151x² - 37x y + 72y² + 14x - 42y = 1320 ''.}}
;Conic[ <Number a>, <Number b>, <Number c>, <Number d>, <Number e>, <Number f> ]
+
: {{Note| If four of the points lie on one line, then the conic section is not defined.}}
:Returns a conic section <math>a\cdot x^2+b\cdot y^2+c+d\cdot x\cdot y+e\cdot x+f\cdot y=0</math>.
 
  
{{Note| See also [[Conic through Five Points Tool|Conic through Five Points]] tool and [[Coefficients Command]].}}
+
;Conic( <Number a>, <Number b>, <Number c>, <Number d>, <Number e>, <Number f> )
 +
:Returns a conic section <math>a\cdot x^2+d\cdot xy+b\cdot y^2+e\cdot x+f\cdot y=-c</math>.
 +
:{{example|1=<code><nowiki>Conic(2, 3, -1, 4, 2, -3)</nowiki></code> yields '' 2x² + 4x y + 3y² + 2x - 3y = 1 ''.}}
 +
 
 +
;Conic( <List> )
 +
:Returns a conic section <math>a\cdot x^2+d\cdot xy+b\cdot y^2+e\cdot x+f\cdot y=-c</math>.
 +
:{{example|1=<code><nowiki>Conic({2, 3, -1, 4, 2, -3})</nowiki></code> yields '' 2x² + 4x y + 3y² + 2x - 3y = 1 ''.}}
 +
 
 +
{{Note| See also [[File:Mode conic5.svg|link=|24px]] [[Conic through 5 Points Tool|Conic through 5 Points]] tool and [[Coefficients Command|Coefficients]] command.}}

Latest revision as of 14:37, 22 February 2021


Conic( <Point>, <Point>, <Point>, <Point>, <Point> )
Returns a conic section through the five given points.
Example: Conic((0, -4), (2, 4), (3,1), (-2,3), (-3,-1)) yields 151x² - 37x y + 72y² + 14x - 42y = 1320 .
Note: If four of the points lie on one line, then the conic section is not defined.
Conic( <Number a>, <Number b>, <Number c>, <Number d>, <Number e>, <Number f> )
Returns a conic section a\cdot x^2+d\cdot xy+b\cdot y^2+e\cdot x+f\cdot y=-c.
Example: Conic(2, 3, -1, 4, 2, -3) yields 2x² + 4x y + 3y² + 2x - 3y = 1 .


Conic( <List> )
Returns a conic section a\cdot x^2+d\cdot xy+b\cdot y^2+e\cdot x+f\cdot y=-c.
Example: Conic({2, 3, -1, 4, 2, -3}) yields 2x² + 4x y + 3y² + 2x - 3y = 1 .


Note: See also Mode conic5.svg Conic through 5 Points tool and Coefficients command.
© 2021 International GeoGebra Institute