# 수직선 명령

이동: 둘러보기, 검색
이 페이지는 공식 매뉴얼에서 출력과 pdf를 위한 부분입니다. 일반 사용자들은 이 페이지를 편집할 수 없습니다. 만일 이 페이지에서 오류를 발견하였으면, 연락하여 주시기 바랍니다.사용자에 의해 편집 가능한 버전으로 이동
##### 수직선
이 글은 GeoGebra 명령 에 관한 것입니다.
##### 명령 분류 (모든 명령)
PerpendicularLine( <Point>, <Line> )
Creates a line through the point perpendicular to the given line.
예:
Let `c: -3x + 4y = -6` be a line and `A = (-2, -3)` a point. `PerpendicularLine(A, c)` yields the line d: -4x - 3y = 17.
노트: For 3D objects a third argument is added to this command to specify the behavior: if 2D view is active, plane z=0 is used as third argument, if 3D view is active, space is used instead. See PerpendicularLine( <Point>, <Line>, <Context> ) further below for details.
PerpendicularLine( <Point>, <Segment> )
Creates a line through the point perpendicular to the given segment.
예:
Let c be the segment between the two points A = (-3, 3) and B = (0, 1). `PerpendicularLine(A, c)` yields the line d: -3x + 2y = 15.
PerpendicularLine( <Point>, <Vector> )
Creates a line through the point perpendicular to the given vector.
예:
Let `u = Vector((5, 3), (1, 1))` and `A = (-2, 0)` a point. `PerpendicularLine(A, u)` yields the line c: 2x + y = -4.

PerpendicularLine( <Point>, <Plane> )
Creates a perpendicular line to the plane through the given point.
PerpendicularLine( <Line> , <Line> )
Creates a perpendicular line to the given lines through the intersection point of the two lines.
PerpendicularLine( <Point>, <Direction>, <Direction> )
Creates a perpendicular line to the given directions (that can be lines or vectors) through the given point.
PerpendicularLine( <Point>, <Line>, <Context> )
Creates a perpendicular line to the line through the point and depending on the context.
• PerpendicularLine( <Point>, <Line>, <Plane> ) creates a perpendicular line to the given line through the point and parallel to the plane.
• PerpendicularLine( <Point>, <Line>, space ) creates a perpendicular line to the given line through the point. The two lines have an intersection point. This command yields undefined if the point is on the line in 3D.