GeoGebra


Vordefinierte Funktionen und Operatoren

Wechseln zu: Navigation, Suche

Um Zahlen, Koordinaten oder Gleichungen zu erzeugen (siehe Abschnitt Direkte Eingabe) können sie auch die folgenden vordefinierten Funktionen und Operatoren verwenden.

Hinweis: Die vordefinierten Funktionen müssen zusammen mit runden Klammern eingegeben werden. Dabei darf sich kein Leerzeichen zwischen dem Namen der Funktion und der öffnenden runden Klammer befinden.


Operation / Funktion Eingabe
ℯ (Eulersche Zahl) Alt + e
ί (Komplexe Zahl) Alt + i
π Alt + p oder pi
° (Gradzeichen) Alt + o
Addition +
Subtraktion -
Multiplikation * oder Leerzeichen
Skalarprodukt * oder Leerzeichen
Kreuzprodukt
Division /
Potenzieren ^ oder Hochstellung (x^2 oder x2)
Faktorielle !
Klammersetzung ( )
x-Koordinate x( )
y-Koordinate y( )
Argument arg()
Konjugiert-komplexe Zahl conjugate()
Absolutbetrag abs( )
Signum sgn( ) oder sign( )
Quadratwurzel sqrt( )
Kubikwurzel cbrt( )
Zufallszahl zwischen 0 und 1 random( )
Exponentialfunktion exp( ) oder ℯx
Logarithmus (natürlich) zur Basis e ln( ) oder log( )
Logarithmus zur Basis 2 ld( )
Logarithmus zur Basis 10 lg( )
Logarithmus von x zur Basis b log(b, x)
Kosinus cos( )
Sinus sin( )
Tangens tan( )
Sekante sec()
Kosekante cosec()
Kotangens cot()
Arcus Kosinus acos( ) oder arccos( )
Arcus Sinus asin( ) oder arcsin( )
Arcus Tangens (gibt eine Antwort zwischen -π/2 und π/2 zurück) atan( ) oder arctan( )
atan2 (gibt eine Antwort zwischen -π und π zurück) atan2(y, x)
Kosinus Hyperbolicus cosh( )
Sinus Hyperbolicus sinh( )
Tangens Hyperbolicus tanh( )
Sekans Hyperbolicus sech()
Kosekans Hyperbolicus cosech()
Kotangens Hyperbolicus coth()
Area Kosinus Hyperbolicus acosh( ) oder arccosh( )
Area Sinus Hyperbolicus asinh( ) oder arcsinh( )
Area Tangens Hyperbolicus atanh( ) oder arctanh( )
Nächst kleinere oder gleiche ganze Zahl floor( )
Nächst größere oder gleiche ganze Zahl ceil( )
Runden round( )
Betafunktion Β(a, b) beta(a, b)
Unvollständige Betafunktion Β(x;a, b) beta(a, b, x)
Unvollständig regularisierte Betafunktion I(x; a, b) betaRegularized(a, b, x)
Gammafunktion gamma( x)
Unvollständige Gammafunktion γ(a, x) gamma(a, x)
Unvollständig regularisierte Gammafunktion gammaRegularized(a, x)
Gaußsche Fehlerfunktion erf(x)
Realteil real( )
Imaginärteil imaginary( )
Digamma-Funktion psi(x)
Die Polygammafunktion ist die (m+1)-te Ableitung vom natürlichen Logarithmus der Gammafunktion, gamma(x) (m=0,1) polygamma(m, x)
Integralsinusfunktion sinIntegral(x)
Integralkosinusfunktion cosIntegral(x)
Integralexponentialfunktion expIntegral(x)
Riemannsche Zeta-Funktion ζ(x) zeta(x)