Diferencia entre revisiones de «Resolviendo Sistemas»

De GeoGebra Manual
Saltar a: navegación, buscar
Línea 1: Línea 1:
 
==Resolviendo Sistemas Lineales==
 
==Resolviendo Sistemas Lineales==
<ggb_applet width="760" height="570"  version="5.0" ggbBase64="UEsDBBQACAgIAGezmEUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICABns5hFAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1c/XLbxhH/23mKG3YmQzkkhbvDB+WQ7sRqUmfGSTyWm8nU8mhA4ighBgEGACXKjP5vn6L/ts/RN8mTdPfu8A1SEkW7nqYeS/ja3dvd+93u3gL26I+reUAuRZz4UTju0IHRISKcRp4fno87y3TWH3b++PSz0bmIzsUkdsksiuduOu6YA7NT8MHVwLSQ2ffGnantWYxas74lPNY3j2asP3Qtp+9atj20DZNxwTqErBL/SRh9785FsnCn4mR6Iebui2jqplLmRZounhweXl1dDbLRB1F8fnh+PhmsEq9DQPMwGXf0yRMQV2G64pKcGQY9/Om7F0p83w+T1A2nokPQqqX/9LNHoys/9KIrcuV76cW44xig3IXwzy9SvACbDpFoAbYuxDT1L0UCrKVLaXM6X3QkmRvi80fqjAS5OR3i+Ze+J+JxxxhwZ3hEneJ3h0SxL8JU01I95mEmbXTpiyslFs/kiOD/NIqCiYsSya+/EmYwg/TwQNWBwcG21SND3TO4OjB1MNXBUjSmYjcVqaloTEVjcphuP/EngRh3Zm6QgAf9cBbD7OXXSXodCKlPGi/hujCe9sCkxH8PtBw9qjwO9w2jhz82/JiZq0s2socMyntGNii17eagzGoflNoPM5VnozKHFqPCYPKv/GmOWRpSSbzHiNl49pF5d9cOS/ChCI9fCUVcyAMniAgqkYEHU1/a6tKRB2qoA9UPh/jrCC8e5MDCfeVJO7J7jDob/ce3IUWNcAcHUquEzb7Zg78OThozGwPaleW398G3o8U0jpy9D0mHABhwsW2brYM6RmvAUUeqj/ufhhZPjA6zcDjSCpHkAmmzEVMxT1BHfkQsCUhKLEC47UAoswg9goODSGeEWsS04JIOiY1Hh3AEt0k4GRKko5zICGgN4ZfpSGE2sUAY3nXUEiDcJBYnVAZOk4AjiAy+4BbGgcKyiAVMODxlKILbxLThig+JCTpi3HVwBXJghGsYnhFOCUdm6hBmE5sRB2M3NTGk20PUHqQyYhvElt6H6A2RW0VtYBkSjgbBElpEiZ97+EIEi8z10pd+uFimVf9N515GkkZVai+avntW97dwkzS/ADLIW0V2VHmskjwfjQJ3IgIoMU4QDIRcugGueznCLApTkgFhqO6dx+7iwp8mJyJNgSshP7uX7gs3FatvgDrJxpZDy5w+Estp4Hu+G/4ISEERKJBkKV4GyizF24YeeRpFsXdynQB6yOqvIo4wMDpY1FyrK2Ybg6PyH5CSTF3EumUMjPIf8PT1hkdMjSYuc2vclchtIOexn3sfz79NnkWBlz9eRH6YHruLdBnLEg0GitGOr8LzQEh3yntQ7EzfTaLVifIjV7JeXy8ERiupwOT8OAqimMBKZJYFBPo4UUdJg5rlVIakMSSFkU2M7+XP6RGTFPI4UUdJBTOtVNOW0sxKamTD+ImMMZiwy8iSOMHaaRn66YvsIvWn7wpTkeH75XwCENN+q8qk+5I5OqyhapQsYuF6yYUQaSvOjAJl2lJgmB2LIDgpkzklOq4JExHgeolCQi5OpnEUBCrNlM6nUbCch/I0Rvs0Z+BeR0tcQmDDN1CtLwP3GYbbLPHC7T+XMIbXz5XUZ0VUxrs/tt59BmMlIn4JlWlQEXos1XkODhEVhlcgv3LTDYLo6gTCge8GX3t+GhXKyUevIaa/9heZ54n4ZQlPX8HBj0WxEtxlGh1H80UgUlGJAI1ZGb0TMWir1ngIa24ZLRMVdHK2R6NlIl666cVXofdKnIPjX7qYtlKAgCItoOWB6nNgVPc1yF1cgH8BSKm7njiPRQbFQO5e1BKQT41yxGnclqK+iaP5t+Hla1jdNVVHh5k9o2Qa+wsMImQCefRdyTuen7iQhb0yHxifgBUKVqmfItilHy9wCoDHRU92MHwGYg7bEZLKgBEu5yL2p/nSOfExRrpyvwOqLbX2bJBhF2adRJOfAcB5llechQ/hcRF+DLMSWgAGiwsX90k0h7SIKy6S8n6YzRKRkhVIgIhzDXWRWXr6XeRpxbSUJMDtF5n7KhPO3ZUsNt1JAshNYf8JExYW+0+luF6iUNliIsCh5Db3GleqzA0zfyXyxQSO9N8DxKp4KeJfClnsHWzpEhn7tHv1yXPf80SYa+uGgDE5U+DshYpKCyFUQMsZF+AamQdKQJ5CdkA+abueK/I8mp//+1+hiKAW+vpnEU/9qR9BAfRVIFxYgXDOdYxTU48gWMFCSnCDn0/f6syF9bgCdT7/ZRmlX56CiheT2ZqcBmKWnq7J6oySMTmFim+6pjdr54acfgk3TdIntAcnLH/Kyk+/KFj4DdJxoOure3wjITmVqe/0hpAbpY80oQpeKBLSTsWA7RAtOzIKPV9NAZD/oKkzj/72938Q1gSzypLUaIJ5S97lRyrvYqLW9HkO3gD+At76rp+8cF+Ln+rBStZTELD9WRGtIfl8h80eM6u4h7ouz4UlqRunL7HWIAj6Ph0MabnysR21BgY2q5Q9IPG9aiPVwbQ1oqzO1ubZ4KYeUYxdIwo1dCli8U3TcGtM6eOkoI3DuwaVPrV0WMGTe8YVkzEdWJhDS4FFz9k9IouTxQfUYo+R5dbYwCqxYa1igbqAhdvtUnIIG6zHRM/2AQaFA3iiSXR4KHOwOscXBIXwgisLFmWubrfPDw7uwJrzaKJCl/HmZ1moIbfHGtaMNdUitBRsPokYUg4WuoLbEitoa6wwBw6r7ncQ1LBzqgSQ4XBTpJhG87kbeiSUTYOv1f1OsVV1jXFnzWCT24Oydxl63VdAHc3f9J0eGb49uAHraVGjKN8u04zTPVtTdqPG1CPdGp00z6ZypzlzGwqZe1vZh5yJPzvaSXewkzbs7NMPbyjYuLuZfAczecPMT9xKtsNksuZkPszKZtSfwCiQt1Xcr1o27BHn7UFbmKyrqoXUcTf88DPCe4TvPCM7hBHWDCP8w1tp9Iixs5U7rC7WXF3G/nFH94E7uqXo/DQDATfvPyHI8/HD3UMWF98BdrwJu098cfEdQghvhpCPgNiH1Ft8h9TFm6nrk6+32A4rkzVX5seotx4CWrqDmbRp5gfICOY+MoLZzAgPiyKtqvJ9qMqbqlp7VjU4o1rPtdod9IjaDakj10cTjiqbymum6ZimY5qOaTqm6bim45qOazqu6cDAmzZfBIDOTlnFB22zW3pE2/vOjW1zGrtTUW+8ucuVH/hufF1/0Nq0Ydu7wbDWJtGzaFWXJV8HypdJ5Xeo6m7xXqF/h5lOV2erSv+mW7RA1NQX3ZHVmezbdEmVhFVIGFE0FRJeIeEtFGaFwgQh5eaOAllB8fkfqPFltyyAtSpaobhdT1bTk7SYy+qakoNxRVFWVlRrWpHAb1WV11RtUYPXVZW61uU0dSVVZXlJ2bs3uFa/xwZX3xjwo+p3AKobDg+GVvm+42xshzfX3/va+tvwbqXU6JT9/jcny9h7DfPyppt1KvvEkd3Pt2+rfVLsrq43szt40y61TFEIo2Up+buZLWK6/aNq29VpkVO8urlzO/V9G9o2vAv4n3tzszNW6WBoVj4/UVClA8epIHVjO7YFqWfvK0C9xyvGO76lgwF2eeuzqc7Z/sanMR1NFx5V13u+2s1qS9t+UEtb1eQqb9xShU/O2P1K8Il+FfFxN42G3DSqlH2rRfS+FtH/wgbRUPvDvDTdbhK/r0l833tBN5mKQH34AseXrh8/xW86pUXH6glclpa4HBtsioJL8Yas11nph7knL/Iwk+TlHOaDvHLD0mIM7sG6fq2LsZyVlVlZmZWVWBlB3qw8ypl5mZmXmblmltz8BrmBS+Y7ma3wF5C87RAi1CcR0rj1uqtte5zXXtq+x3mppW18nNeq2k68YR4Upna1rRVRrC6K1UWxqiiWieJ1UbwuitdF8aoo9EObG8AL6IRj/MJTAuvR6LCCBo3gbeBY6ze7pfe55kH5A4/Sa1szf++aVQ71t7NVCsQA6glrK3Txc9FSrAdVK8rByspBDecZ1jPUEzjqlZWcneC/97jvKgA28mRMdCx4UyyKvoIl04hUhmkoqEdcPurXUc1I8ZhLzjJuNwC3R2gB3qoyAOJ+BhNWIKRFoS7PHpeUknhjJajxAlQZ0UYk9eg+wAQ+fjL+CIB6CJ4qmeFP+Eng3A/dZnbY2CIxinDY7Iv0s2DZ2g2RD1VpYODVTSPPeGfifnkGGep5hu2z6bjNRRNEUqt/JgivdudMEHStnqHbPXPPosJrFhX0I7yFLKoK8w5VhXnfqsL8VKqKlkBKqpFUNTDGChCkLZQa1UBaj6TG5vy/axg1tgVR4/YQanzYANoWO1vj5uZ4uac42dpTjNq+CSt/HwqDtn0Yqm/L70BJ8SEouUEl7/yxZ7THjgH93XQMHFNtcOnAHlZ6Bxs3uC1TDzMR0bbJ39zAyvpXG1pXG/ncSdLV6y4XcHBQF8G3iYAlUeOvtKvu2qNSRv8fcztgTkGOD/h9OlEwqxWIvRLJUsjk0lqiF9Ofxf+1bLlgKaHdXm12tlbz7VKMVhlby/52Qf0N2sBd+Q6hPbvdvWfP99lFJb/97Z/kU0XsFmgaGTSNO0Cz+ok7V//UZGDxWk+wHbWH5X91g9fZf2bw9D9QSwcIQRGOmn4NAAB8QQAAUEsBAhQAFAAICAgAZ7OYRUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICABns5hFQRGOmn4NAAB8QQAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAABYOAAAAAA=="  ramePossible = "true" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
+
<ggb_applet width="760" height="570"  version="5.0" ggbBase64="UEsDBBQACAgIAEm4mEUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICABJuJhFAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1c/XLbxhH/23mKG3YmQzkkhbvDB+mQ7sRqUmfGSTyWm8nU8mhA4kghBgEGACXKjP5vn6L/ts/RN8mTdO8DHweAFEnRrqepxxKAu9293b3f7e4dYA//uJoH6JrFiR+FoxbuGS3Ewknk+eFs1Fqm026/9cennw1nLJqxceyiaRTP3XTUMntmq+CDp55pcWbfG7UmtmcRbE27FvNI1xxMSbfvWk7XtWy7bxsmoYy0EFol/pMw+t6ds2ThTtj55IrN3RfRxE2FzKs0XTw5Pb25uello/eieHY6m417q8RrIdA8TEYtdfMExGlMN1SQE8PApz9990KK7/phkrrhhLUQt2rpP/3s0fDGD73oBt34Xno1ajkGKHfF/NkVmGkPaAudcqIF2Lpgk9S/Zgmwlh6Fzel80RJkbsj7H8k7FOTmtJDnX/sei0cto0ep6Th2/rvfQlHsszBVtIYa8zSTNrz22Y0Uy+/EiOD/NIqCscslol9/RcQgBurwC5YXAhfbll2GbDOovBB5MeXFkjSmZDclqSlpTEljgh+u/cQfB2zUmrpBAh70w2kMs5c/J+ltwIQ+abyE58J43MHQ7b8HWmqAddLj0G4YHf5jw49pKLNLNmJ7n1FVQ3lYmg1LHFwMaxkd8Vf81ActjSkN2d1Qko1n0f7uZpIHWWnkNlJSH5NYzWP2S/DBHB6/IsxxIS4UcURggQx+MdWjLR8dccGGvGDV2ee/Bvxhr1mrurCYMtsuzBnYHYKdjXNGt7lQjrAFndmI2Cphs2t24K/DgULM2oC2tvyOPvh2hJrGwDn6kLgPgAEX27bZOKhjNAYcecXqevxpaPDE8DQLh0OlEEquOK1arSmbJ1xFOkCWwCNGFgDcdiCSWQgP4OJwoBOELWRa8Ij7yOZXB1GObRNR1EecDlMkAqDVh1+mI4TZyAJhvNWRKwBRE1kUYRE3TQR+QCL2glcIBQrLQhYw8eEx4SKojUwbnmgfmaAjD7sOX4AUGOEZhieIYkQ5M3YQsZFNkMNDNzZ5RLf7XHuQSpBtIFs4H4I3BG4ZtIGljyg3CFbQIkr83MFXLFhkfhKu9MPFMtXcN5l72W0a6cReNHn3LPe2ml/mJmn+AGSQtYrcKLOYljofDQN3zAIoMM45FBC6dgO+6sUI0yhMUQaDvmybxe7iyp8k5yxNgStBP7vX7gs3ZatvgDrJxhZDi4w+ZMtJ4Hu+G/4IOOEiuECUJXh7YBYJ3sJYjjKJotg7v00APGj1VxZHPCw6vKS5lU/ENnqD8h+QkkxcjnTL6BnlP+Do2w1dRI7GrnNr3BXLbUCz2M+9z++/TZ5FgZd3LyI/TM/cRbqMRYEGA8Xcjq/CWcCEO0UblDqTd+NodS79SKWs17cLxmOVUGA8O4uCKEawDollAYG6juVV0HDNcipD0BiCwsgmxvfyfjwggkJcx/IqqGCmpWrKUpxZiY1sGD8REYYnsjKyBE545bQM/fRF9pD6k3eFqZzh++V8DBBTftNl4mPJHJ5WUDVMFjFzveSKsbQRZ0aBMmUpMEzPWBCcl8mcEh1VhAkL+HqJQoSuzidxFAQyyZTuJ1GwnMvsH3P7FGfg3kZLvoTAhm+gVl8G7rNS1cCb/1zCGH9+LqU+K2Iyb/2xsfUZjJWw+CXUpYEm9Eyo8xwcwjSGVyBfa3SDILo5h3Dgu8HXnp9GhXKi6zVE9Nf+IvM8Yr8sofcVXPyYFSvBXabRWTRfBCxlWgSozcrwHYtBW7nGQ1hzy2iZyKCTsz0aLhP20k2vvgq9V2wGjn/p8qSVAgQkaQEtD1SfA6NsVyB3+QL8C0BKtnpsFrMMioHYu8glIHqNcsSpNQtR38TR/Nvw+jWs7oqqw9PMnmEyif0FDyJoDFn0Xck7np+4kIO9Mh8Yn4AVElapn3KwCz9e8SkAHpd7ssXDZ8DmsBlBqQgY4XLOYn+SL51zn8dIV+x2QLWl0p70MuzCrKNo/DMAOM/xkrPwIXQX4ccwtdACMFhcuXyXhHNIs1hzkZD3w3SasBStQAJEnFuoisxS73eRpxRTUpKAb77Q3JeJcO6uRN3tjhNAbgq7T5iwsNh9SsXVEoW6licCziE2ubd8pYrcMPVXLF9M4Ej/PUBMx0sR/1LIYu9gQ5eI2Kfcq26e+57HwlxbNwSMiZkCZy9kVFowJgNazrgA14g8UALyBLID5xO2q7lCz6P57N//ClkEpdDXP7N44k/8COqfrwLmwgqEe6pinJx6DoIVLKSEb+/z6VtdurAeV6DO578so/TLC1Dxajxdo4uATdOLNVpdYjRCF1DvTdb4bu3coYsvodFEXYQ7cEPyXlLu/aJgoXecjgJdV7bRjYToQqS+izuE7qQ+wgQdvFAkpC3NgO0QLTsyCj1fTgGQ/6CoM4/+9vd/IFIHs8yS2KiDeUvepQOZd3miVvR5Dt4A/gLeqtVPXriv2U/VYCXqKQjY/rSI1pB8vuNHPWZWb/dVVZ4LS1I3Tl/yWgNx0Hdxr4/LlY/tyDXQs4lW9oDE9/IQqQqmrRFldbk2L3t31YhiHBpRsKFKEYtumoZ7Y0qXTwq3sb9rUOliS4UVfrNnXDEJUYGFOLgUWNSc7RFZnCw+cC2OGFnujQ1Eiw1rGQvkAyzcdhujU9hfPUZqtk94UDiBHkWiwkOZg1Q5vkBcCC24smBR5mq3u/TkZAfWnEcRFbqMNvdloQbdH2tIPdboRWgp2HwSMaQcLFQFtyVW4MZYYfYcou93OKhh56QFkH5/U6SYRPO5G3ooFEcGX8v2VrFTdY1Ra01gj9uBsncZeu1XQB3N33SdDuq/PbkD63FRo0jfLtOM071cY3Inx1Qj3RudFM+mcqc+cxsKmb2t7ELO5D8H2okPsBPX7OziD28o2Hi4mfQAM2nNzE/cSnLAZJL6ZD7MynrUH8MokLdl3Nct63eQ8/akKUxWVVVCqrjrf/gZoR1ED56RA8IIqYcR+uGtNDrIONjKA1YXqa8u4/i4w8fAHd5SdH6agYCa+08I5/n44e4hi4seADtah90nvrjoASGE1kPIR0DsQ+otekDqovXU9cnXW+SAlUnqK/Nj1FsPAS0+wExcN/MDZATzGBnBrGeEh0WRRlXpMVSldVWtI6saXGKl51ruDjpI7obklaqrCVeZTcUzUXRE0RFFRxQdUXRU0VFFRxUdVXRg4F2TLwJAZ6us4oO22Q1nRNvPnWvb5jR2J6x68OYuV37gu/FttaPx0IZsPw2GtTaOnkWrqizxOlC8TCq/Q5WtxXuF7g4zna4uV9r5Tbs4ApFTX5yOrC7FuU0b6SREIyFI0mgkVCOhDRSmRmGCkPLhjgRZQfH5H7DxZbssgDQqqlHcryep6IkazCVVTdHJSFOUlBVVmmoS6L2q0oqqDWrQqqpC16qcuq5IV5aWlN39gGv1ezzg6ho9OtC/A5Cn4dDRt8rtjrPxOLy+/t5X1t+Gdyulg05x3v/mfBl7r2Fe3rSzk8oucsTp59u3+jkpP11db2Z3eKNdOjLlQgguS8nfzWwR0+4O9GNXp0FO8epm5+PU901o2/Au4H/uzc3BWMW9vql9fiKhinuOoyF143FsA1Iv32tAvecV445v5kDoIW96NtU229/y1KagwW2OvsSzFa4t8EHfetAxtqzDZa64p/IeX5L9yu6xev3wcTeKhtgoyjR9r0V4X4vwf2FTaMg9YV6ObjeJ7msSPfb+z00mLJAfu8D1pevHT/lXnMKiM9kDj6VlLcYGm6Lgmr1B63VW7vF8kxd2PHvkJRzPAXm1xsuJEbiH1/JrVYDlrKTMSsqspMRKEOfNSqKcmZaZaZmZKmbBTe84N3CJHCcyFP8FJG9bCDH5GYQwbr1uK9se5/WWsu9xXl4pGx/n9amykzeYJ4WpbWWrJopURZGqKKKLIpkoWhVFq6JoVRTVRXE/NLkBvMCdcMa/6hTAejQ81dCgELwNHGv1Nrf0Dtc8KX/UUXpVa+bvWrNqofpGVqfgGOB6wtoKXf6JaCnWg6qacrCyclDDfYb1DPUIrmplJZfn/F947LsKgA09GSEVC94Ui6IrYUkUIqVhCgqyi4qubhXVBBXdVHCWcbsBuB2EC/DqygCIuxlMSIGQBoXaNOsuKSXwRkpQowWoMqKNSOrgY4AJfPxk9BEA9RA8aZnhT/wzwLkfuvXssPFYxCjCYf0spJsFy8YTENEpSwODP93V8ox3yfbLM5yhmmfIMQ8at7lozJHU6J8xh1ezc8YcdI2ewds9s2dR4dWLCvwR3jwWVYW5Q1Vh7ltVmJ9KVdEQSJEeSeWhxUgCAjWFUkMPpNVIamzO/4eGUWNbEDXuD6HGhw2gTbGzMW5ujpdHipON54hR03dg5W9CYdCmj0FVs/j2ExUff6I7ruTOH3hGRzwlwL/XUwIqt7u4N9Cajc3fd9aBAPMS4SYobD7Cyk6wNhxebeRzx0lbrcJcwMlJVQTdJgIWSIVfO7Da9ZRKGv1/BO6PQEc/VO1LBNKerbfvc6QKU67h7xVLlkzkocZqvsBGlirW4nSGVx1qTvSz0MbCv1mK0Shj6w6hWVB3gzbQKl4xNCfC3Y/06TEPWdFvf/sn+lThvAW3+T+oNnbArf4FvIycZs+iO6H2tPyPcvhz9j8dPP0PUEsHCAVVgYOODQAAmUEAAFBLAQIUABQACAgIAEm4mEVFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgASbiYRQVVgYOODQAAmUEAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAAAmDgAAAAA=="  ramePossible = "true" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />

Revisión del 00:03 25 dic 2014

Resolviendo Sistemas Lineales

© 2024 International GeoGebra Institute