Difference between revisions of "Normal Command"

From GeoGebra Manual
Jump to: navigation, search
m (→‎CAS Syntax: better formula rendering)
m (better formula rendering)
Line 9: Line 9:
  
 
;Normal[ <Mean μ>, <Standard Deviation σ>, <Variable Value v> ]
 
;Normal[ <Mean μ>, <Standard Deviation σ>, <Variable Value v> ]
:Calculates the function ''Φ((x – μ) / σ)'' at ''v'' where ''Φ'' is the cumulative distribution function for ''N(0,1)'' with mean ''μ'' and standard deviation ''σ''.
+
:Calculates the function <math>\Phi \left(\frac{x- \mu}{\sigma} \right) </math> at ''v'' where ''Φ'' is the cumulative distribution function for ''N(0,1)'' with mean ''μ'' and standard deviation ''σ''.
 
:{{note| Returns the probability for a given ''x''-coordinate's value (or area under the normal distribution curve to the left of the given ''x''-coordinate).}}
 
:{{note| Returns the probability for a given ''x''-coordinate's value (or area under the normal distribution curve to the left of the given ''x''-coordinate).}}
  

Revision as of 08:11, 4 October 2013




Normal[ <Mean>, <Standard Deviation>, x ]
Creates probability density function (pdf) of normal distribution.
Normal[ <Mean>, <Standard Deviation>, x, <Boolean Cumulative> ]
If Cumulative is true, creates cumulative distribution function of normal distribution with mean μ and standard deviation σ, otherwise creates pdf of normal distribution.
Normal[ <Mean μ>, <Standard Deviation σ>, <Variable Value v> ]
Calculates the function \Phi \left(\frac{x- \mu}{\sigma} \right) at v where Φ is the cumulative distribution function for N(0,1) with mean μ and standard deviation σ.
Note: Returns the probability for a given x-coordinate's value (or area under the normal distribution curve to the left of the given x-coordinate).

CAS Syntax

Normal[ <Mean>, <Standard Deviation>, <Variable Value> ]
Calculates the function \Phi \left(\frac{x- \mu}{\sigma} \right) where Φ is the cumulative distribution function for N(0,1) with mean μ and standard deviation σ.
Example:
Normal[2, 0.5, 1] yields \frac{-erf(2/\sqrt{2})+1}{2}.
© 2024 International GeoGebra Institute