Difference between revisions of "LogNormal Command"

From GeoGebra Manual
Jump to: navigation, search
m
Line 1: Line 1:
<noinclude>{{Manual Page|version=4.2}}</noinclude>
+
<noinclude>{{Manual Page|version=4.2}}</noinclude>{{command|probability}}
{{command|probability}}
 
 
;LogNormal[ <Mean>, <Standard Deviation>, x ]
 
;LogNormal[ <Mean>, <Standard Deviation>, x ]
 
:Creates probability density function (pdf) of [[w:Log-normal distribution|log-normal distribution]] with parameters mean ''μ'' and standard deviation ''σ''.
 
:Creates probability density function (pdf) of [[w:Log-normal distribution|log-normal distribution]] with parameters mean ''μ'' and standard deviation ''σ''.

Revision as of 11:08, 6 August 2015


LogNormal[ <Mean>, <Standard Deviation>, x ]
Creates probability density function (pdf) of log-normal distribution with parameters mean μ and standard deviation σ.
LogNormal[ <Mean>, <Standard Deviation>, x, <Boolean Cumulative> ]
If Cumulative is true, creates cumulative density function of log-normal distribution, otherwise creates pdf of log-normal distribution.
LogNormal[ <Mean>, <Standard Deviation>, <Variable Value> ]
Calculates the value of cumulative distribution function of log-normal distribution at variable value v, i.e. the probability P(X ≤ v) where X is a random variable with log-normal distribution given by parameters mean μ and standard deviation σ.
Note: Returns the probability for a given x-coordinate's value (or area under the log-normal distribution curve to the left of the given x-coordinate).

CAS Syntax

LogNormal[ <Mean>, <Standard Deviation>, x ]
Creates probability density function (pdf) of log-normal distribution with parameters mean μ and standard deviation σ.
LogNormal[ <Mean>, <Standard Deviation>, x, <Boolean Cumulative> ]
If Cumulative is true, creates cumulative density function of log-normal distribution, otherwise creates pdf of log-normal distribution.
LogNormal[ <Mean>, <Standard Deviation>, <Variable Value> ]
Calculates the value of cumulative distribution function of log-normal distribution at variable value v, i.e. the probability P(X ≤ v) where X is a random variable with log-normal distribution given by parameters mean μ and standard deviation σ.
Note: Returns the probability for a given x-coordinate's value (or area under the log-normal distribution curve to the left of the given x-coordinate).
© 2022 International GeoGebra Institute