Difference between revisions of "FractionalPart Function"

From GeoGebra Manual
Jump to: navigation, search
m (formatting)
m (added different results for CAS and AV)
Line 3: Line 3:
 
;fractionalPart( <Expression> ) :Returns the fractional part of the expression.
 
;fractionalPart( <Expression> ) :Returns the fractional part of the expression.
 
{{example| 1=<div>
 
{{example| 1=<div>
*<code><nowiki>fractionalPart( 6 / 5 )</nowiki></code> yields <math>\frac{1}{5}</math>,
+
*<code><nowiki>fractionalPart( 6 / 5 )</nowiki></code> yields <math>\frac{1}{5}</math> in ''CAS View'', 0.2 in ''Algebra View''
*<code><nowiki>fractionalPart( 1/5 + 3/2 + 2 )</nowiki></code> yields <math>\frac{7}{10}</math>.
+
*<code><nowiki>fractionalPart( 1/5 + 3/2 + 2 )</nowiki></code> yields <math>\frac{7}{10}</math> in ''CAS View'', 0.7 in ''Algebra View''
 
</div>}}
 
</div>}}
 
{{Note|1=<br>
 
{{Note|1=<br>

Revision as of 12:47, 31 March 2015

fractionalPart( <Expression> )
Returns the fractional part of the expression.
Example:
  • fractionalPart( 6 / 5 ) yields \frac{1}{5} in CAS View, 0.2 in Algebra View
  • fractionalPart( 1/5 + 3/2 + 2 ) yields \frac{7}{10} in CAS View, 0.7 in Algebra View
Note:

In Mathematics fractional part function is defined sometimes as

x-\lfloor x\rfloor

In other cases as

sgn(x)(\mid x\mid-\lfloor \mid x\mid\rfloor) .

GeoGebra uses the second definition (also used by Mathematica).
To obtain the first function you may use f(x) = x - floor(x)

See also Predefined Functions and Operators.

Comments

The following picture shows the two possible definitions of fractional part function, the lower one is used in GeoGebra. Fractionalpart.png

© 2024 International GeoGebra Institute