矩陣

来自GeoGebra Manual
跳转至: 导航搜索
Accessories dictionary.png
本頁為官方文件,一般使用者無法修改,若有任何誤謬,請與官方聯絡。如欲編輯,請至本頁的開放版


GeoGebra 支援實數矩陣(matrix),將矩陣的每一列作為元素,以二維串列來儲存矩陣。

範例: 在 GeoGebra 中,用 {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} 表示一個 3x3 矩陣 \begin{pmatrix}1&2&3\\ 4&5&6\\ 7&8&9 \end{pmatrix}

要在 Menu view graphics.svg 繪圖區用 LaTeX 格式顯示一個矩陣,可以使用 FormulaText_指令,或從代數區拖曳一個矩陣物件放到繪圖區

範例:指令列輸入 FormulaText[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}] 會產生一個 LaTeX 格式的矩陣。

取用矩陣的元素

想要取用串列的特定元素(element),您可以使用 Element_指令或下列範例中的簡化語法:

範例: 假設矩陣 matrix={{1, 2}, {3, 4}},則:
  • matrix(1, 1) 取出第一列第一行的元素:1
  • matrix(2, 2)matrix(-1,2)matrix(2,-1)matrix(-1,-1) 等指令都是取出第二列第二行的元素:4
  • 一般來說,matrix(i, j)ij 為整數)會取出矩陣第 i 列第 j 行的元素。

矩陣運算

矩陣運算實際上是以串列來做運算,所以才有下列的語法與計算結果。

備註: 某些語法的運算方式在數學領域內並不成立。

加法與減法

  • Matrix1 + Matrix2:將兩個同階矩陣相對應的元素相加。
  • Matrix1 – Matrix2:將兩個同階矩陣相對應的元素相減。

乘法與除法

  • Matrix * Number:將矩陣 Matrix 的每一個元素乘上 Number
  • Matrix1 * Matrix2:利用矩陣乘法計算出一個新的矩陣。
備註: Matrix1 的行數與 Matrix2 的列數必須相等,才能進行矩陣乘法運算。
範例: {{1, 2}, {3, 4}, {5, 6}} * {{1, 2, 3}, {4, 5, 6}} 計算出矩陣 {{9, 12, 15}, {19, 26, 33}, {29, 40, 51}}。
  • 2x2 Matrix * Point(或 Vector):對一個點 Point(或向量 Vector)左乘一個矩陣 Matrix
範例: {{1, 2}, {3, 4}} * (3, 4) 產生點 A = (11, 25)。
  • 3x3 Matrix * Point(或 Vector):對一個點 Point(或向量 Vector)左乘一個矩陣 Matrix
範例: {{1, 2, 3}, {4, 5, 6}, {0, 0, 1}} * (1, 2) 產生點 A = (8, 20)。
備註: 上述為一個仿射轉換(affine transformation)的特例,其中使用齊次坐標(homogeneous coordinate):點為 (x, y, 1),而向量為 (x, y, 0)。所以此範例的運算等同於:{{1, 2, 3}, {4, 5, 6}, {0, 0, 1}} * {1, 2, 1}
  • Matrix1 / Matrix2:將矩陣 Matrix1 的每一個元素除以矩陣 Matrix2 中每一個相對應的元素。
備註: GeoGebra 也接受這樣的語法:Matrix1 * Matrix2 ^(-1)

其他運算

矩陣指令頁面有條列出一系列與矩陣相關的指令,像是:

  • Determinant[Matrix]:計算矩陣 Matrix 的行列式(determinant)的值。
  • Invert[Matrix]:計算矩陣 Matrix 的反矩陣(inverse matrix)。
  • Transpose[Matrix]:找出矩陣 Matrix 的轉置(transpose)矩陣。
  • ApplyMatrix[Matrix,Object]:用矩陣 Matrix 對物件 Object 套用仿射轉換。
  • ReducedRowEchelonForm[Matrix]:將矩陣 Matrix 轉化為簡化列梯形式(reduced row-echelon form)。


Comments

備註: 更多關於矩陣乘法的詳細討論請參閱官方討論區(英文)。
© 2021 International GeoGebra Institute