“Mod 指令”的版本间的差异
来自GeoGebra Manual
小 (機器人:執行文字代換作業 (-{{command +{{command|cas=true)) |
(en) |
||
第10行: | 第10行: | ||
;Mod[ <Dividend Polynomial>, <Divisor Polynomial> ] | ;Mod[ <Dividend Polynomial>, <Divisor Polynomial> ] | ||
:{{translate|Mod Command}} | :{{translate|Mod Command}} | ||
+ | ; Mod[ <Integer a>, <Integer b> ] | ||
+ | :Yields the remainder when integer ''a'' is divided by integer ''b''. | ||
+ | :{{example|1=<div><code><nowiki>Mod[9, 4]</nowiki></code> yields ''1''.</div>}} | ||
+ | ;Mod[ <Polynomial>, <Polynomial>] | ||
+ | :Yields the remainder when the first entered polynomial is divided by the second polynomial. | ||
+ | :{{example|1=<div><code><nowiki>Mod[x^3 + x^2 + x + 6, x^2 - 3]</nowiki></code> yields ''9 x + 4''.</div>}} | ||
+ | ==CAS Syntax== | ||
+ | ;Mod[ <Integer a>, <Integer b> ] | ||
+ | :Yields the remainder when integer ''a'' is divided by integer ''b''. | ||
+ | :{{example|1=<div><code><nowiki>Mod[9, 4]</nowiki></code> yields ''1''.</div>}} | ||
+ | ;Mod[ <Polynomial>, <Polynomial> ] | ||
+ | :Yields the remainder when the first entered polynomial is divided by the second polynomial. | ||
+ | :{{example|1=<div><code><nowiki>Mod[x^3 + x^2 + x + 6, x^2 - 3]</nowiki></code> yields ''9 x + 4''.</div>}} |
2011年10月3日 (一) 09:42的最新版本
本頁為官方文件,一般使用者無法修改,若有任何誤謬,請與官方聯絡。如欲編輯,請至本頁的開放版。
- Mod[ <Dividend Number>, <Divisor Number> ]
- Mod[ <Dividend Polynomial>, <Divisor Polynomial> ]
CAS 視窗
- Mod[ <Dividend Number>, <Divisor Number> ]
- Mod[ <Dividend Polynomial>, <Divisor Polynomial> ]
- Mod[ <Integer a>, <Integer b> ]
- Yields the remainder when integer a is divided by integer b.
- 範例:
Mod[9, 4]
yields 1. - Mod[ <Polynomial>, <Polynomial>]
- Yields the remainder when the first entered polynomial is divided by the second polynomial.
- 範例:
Mod[x^3 + x^2 + x + 6, x^2 - 3]
yields 9 x + 4.
CAS Syntax
- Mod[ <Integer a>, <Integer b> ]
- Yields the remainder when integer a is divided by integer b.
- 範例:
Mod[9, 4]
yields 1. - Mod[ <Polynomial>, <Polynomial> ]
- Yields the remainder when the first entered polynomial is divided by the second polynomial.
- 範例:
Mod[x^3 + x^2 + x + 6, x^2 - 3]
yields 9 x + 4.