Differenze tra le versioni di "Comando Risolvi"

Da GeoGebra Manual.
Riga 1: Riga 1:
 
<noinclude>{{Manual Page|version=5.0}}</noinclude>{{command|cas=true|Risolvi}}
 
<noinclude>{{Manual Page|version=5.0}}</noinclude>{{command|cas=true|Risolvi}}
 +
{{note|I comandi ''Risolvi'' e [[comando Soluzioni|Soluzioni]] risolvono un'equazione o un sistema simbolicamente, nel campo dei numeri reali. Per risolvere numericamente le equazioni, utilizzare il comando [[comando RisolviN|RisolviN]]. Per risolvere equazioni nel campo dei numeri complessi, utilizzare il comando [[comando RisolviC|RisolviC]].}}
 
==Sintassi CAS==
 
==Sintassi CAS==
 
;Risolvi[Equazione]
 
;Risolvi[Equazione]
Riga 13: Riga 14:
 
:* <code><nowiki>Risolvi[{x = 4 x + y , y + x = 2}, {x, y}]</nowiki></code> restituisce ''<nowiki>{{x = -1, y = 3}}</nowiki>''.
 
:* <code><nowiki>Risolvi[{x = 4 x + y , y + x = 2}, {x, y}]</nowiki></code> restituisce ''<nowiki>{{x = -1, y = 3}}</nowiki>''.
 
:* <code><nowiki>Risolvi[{2a^2 + 5a + 3 = b, a + b = 3}, {a, b}]</nowiki></code> restituisce ''{{a = 0, b = 3}, {a = -3, b = 6}}''.</div>}}  
 
:* <code><nowiki>Risolvi[{2a^2 + 5a + 3 = b, a + b = 3}, {a, b}]</nowiki></code> restituisce ''{{a = 0, b = 3}, {a = -3, b = 6}}''.</div>}}  
 +
 +
;Risolvi[Equazione, Variabile, Lista di condizioni]
 +
:Risolve un'equazione in una data variabile secondo le condizioni indicate e restituisce la lista delle soluzioni.
 +
:{{examples|1=<div>
 +
:*<code><nowiki>Risolvi[u *x < a, x, u>0]</nowiki></code> restituisce ''<nowiki>{x  <  a / u}</nowiki>'', l'unica soluzione di ''u *x < a'' con ''u>0''
 +
:*<code><nowiki>Risolvi[u *x < a, x, {u<0, a<0}]</nowiki></code> restituisce ''{x > a / u}''.</div>}}
 +
 
{{note|1=
 
{{note|1=
 
* È possibile omettere il secondo membro dell'equazione inserita: in questo caso il secondo membro viene interpretato come 0.  
 
* È possibile omettere il secondo membro dell'equazione inserita: in questo caso il secondo membro viene interpretato come 0.  
* A volte è necessario applicare alcune manipolazioni per consentire al CAS di risolvere l'equazione, come ad esempio in  <code> Risolvi[TrigSviluppa[sin(5/4 π + x) - cos(x - 3/4 π) = sqrt(6) * cos(x) - sqrt(2)]] </code>}}
+
* A volte è necessario applicare alcune manipolazioni per consentire al CAS di risolvere l'equazione, come ad esempio in  <code> Risolvi[TrigSviluppa[sin(5/4 π + x) - cos(x - 3/4 π) = sqrt(6) * cos(x) - sqrt(2)]] </code>
 
+
*Per funzioni definite a tratti è necessario utilizzare il comando [[comando RisolviN|RisolviN]]}}
 +
<br>
 
;Risolvi[Lista di equazioni parametriche, Lista di variabili]
 
;Risolvi[Lista di equazioni parametriche, Lista di variabili]
 
:Risolve un sistema di equazioni parametriche rispetto alle variabili indicate e restituisce la lista delle soluzioni.
 
:Risolve un sistema di equazioni parametriche rispetto alle variabili indicate e restituisce la lista delle soluzioni.
 
:{{example|1=<code><nowiki>Risolvi[{(x, y) = (3, 2) + t*(5, 1), (x, y) = (4, 1) + s*(1, -1)}, {x, y, t, s}]</nowiki></code> restituisce ''<nowiki>{{x = 3, y = 2, t = 0, s = -1}}</nowiki>''.}}
 
:{{example|1=<code><nowiki>Risolvi[{(x, y) = (3, 2) + t*(5, 1), (x, y) = (4, 1) + s*(1, -1)}, {x, y, t, s}]</nowiki></code> restituisce ''<nowiki>{{x = 3, y = 2, t = 0, s = -1}}</nowiki>''.}}
{{note|1=<div>
 
*Per funzioni definite a tratti è necessario utilizzare il comando [[comando RisolviN|RisolviN]].
 
*Vedere anche i comandi [[comando Soluzioni|Soluzioni]], [[comando RisolviN|RisolviN]] e [[comando RisolviC|RisolviC]].</div>}}
 

Versione delle 08:09, 9 ott 2015



Note: I comandi Risolvi e Soluzioni risolvono un'equazione o un sistema simbolicamente, nel campo dei numeri reali. Per risolvere numericamente le equazioni, utilizzare il comando RisolviN. Per risolvere equazioni nel campo dei numeri complessi, utilizzare il comando RisolviC.

Sintassi CAS

Risolvi[Equazione]
Risolve l'equazione indicata rispetto alla variabile principale e restituisce la lista delle soluzioni.
Esempio: Risolvi[x^2 = 4x] restituisce {x = 4, x = 0}.
Risolvi[Equazione, Variabile]
Risolve l'equazione rispetto alla variabile indicata e restituisce la lista delle soluzioni.
Esempio: Risolvi[x * a^2 = 4a, a] restituisce {a = \frac{4}{x}, a = 0}.
Risolvi[Lista di equazioni, Lista di variabili]
Risolve un sistema di equazioni rispetto alle variabili indicate e restituisce la lista delle soluzioni.
Esempi:
  • Risolvi[{x = 4 x + y , y + x = 2}, {x, y}] restituisce {{x = -1, y = 3}}.
  • Risolvi[{2a^2 + 5a + 3 = b, a + b = 3}, {a, b}] restituisce {{a = 0, b = 3}, {a = -3, b = 6}}.


Risolvi[Equazione, Variabile, Lista di condizioni]
Risolve un'equazione in una data variabile secondo le condizioni indicate e restituisce la lista delle soluzioni.
Esempi:
  • Risolvi[u *x < a, x, u>0] restituisce {x < a / u}, l'unica soluzione di u *x < a con u>0
  • Risolvi[u *x < a, x, {u<0, a<0}] restituisce {x > a / u}.


Note:
  • È possibile omettere il secondo membro dell'equazione inserita: in questo caso il secondo membro viene interpretato come 0.
  • A volte è necessario applicare alcune manipolazioni per consentire al CAS di risolvere l'equazione, come ad esempio in Risolvi[TrigSviluppa[sin(5/4 π + x) - cos(x - 3/4 π) = sqrt(6) * cos(x) - sqrt(2)]]
  • Per funzioni definite a tratti è necessario utilizzare il comando RisolviN


Risolvi[Lista di equazioni parametriche, Lista di variabili]
Risolve un sistema di equazioni parametriche rispetto alle variabili indicate e restituisce la lista delle soluzioni.
Esempio: Risolvi[{(x, y) = (3, 2) + t*(5, 1), (x, y) = (4, 1) + s*(1, -1)}, {x, y, t, s}] restituisce {{x = 3, y = 2, t = 0, s = -1}}.
© 2021 International GeoGebra Institute