Diferencia entre revisiones de «Tutorial:Resolver Problemas Ilustrándolos»

De GeoGebra Manual
Saltar a: navegación, buscar
(try)
m (Revertidos los cambios de LailaTov (disc.) a la última edición de Spanish1)
 
Línea 1: Línea 1:
{{tutoriales|
+
{{tutorial|
 
title= Resolver Problemas Ilustrándolos  <small>Diseño del Centro Babbage</small>
 
title= Resolver Problemas Ilustrándolos  <small>Diseño del Centro Babbage</small>
}}{{Interfaz|Tutorial}}
+
}}
 
===Planteo===
 
===Planteo===
 
====¿Cómo harían para…====
 
====¿Cómo harían para…====
... contrastar los registros provenientes de la {{vista|graf}} y de la {{vista|alg}}, tanto trigonométricos como de áreas y amplitud de ángulos?
+
... contrastar los resultados provenientes del registro gráfico y del algebraico trigonométrico de los valores de áreas y amplitudes de ángulos?
  
 
====Ilustrando un Problema====
 
====Ilustrando un Problema====
Línea 10: Línea 10:
 
La [[Archivo:Tool Relation between Two Objects.gif]] [[Herramienta de Relación]] será el recurso clave para llevar adelante el control adecuado -vinculando cada ángulo y cada área en uno y otro registro- en la dinámica figura que se despliega a continuación.<hr>
 
La [[Archivo:Tool Relation between Two Objects.gif]] [[Herramienta de Relación]] será el recurso clave para llevar adelante el control adecuado -vinculando cada ángulo y cada área en uno y otro registro- en la dinámica figura que se despliega a continuación.<hr>
  
<ggb_applet width="570" height="480"  version="4.4" ggbBase64="UEsDBBQACAgIAAajS0EAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAAGo0tBAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1dbXPcuJH+vPkVqPmQ2iTWCO8k96RNydo3Vzlx6uRLpbKVU3FIzIgWh5yQHGlkZ6vuL62df3DffX/pGgDJIWc4r5a8Hq+2bIMkQADdT3ejuwHOnvxxNo7RjcryKE1Oe6SPe0glQRpGyei0Ny2GR27vj1//5mSk0pEaZD4aptnYL057XLeMwtMeGyiHYxYehe5AHfGhEx75KiRH2B8KEfoKe9LrITTLo6+S9M/+WOUTP1AXwZUa+8/TwC/MwFdFMfnq+Pj29rZfDdVPs9HxaDToz/Kwh2CaSX7aKy++gu5aL90y05xiTI7/9qfntvujKMkLPwlUD2kSptHXv/ni5DZKwvQW3UZhcQUEY0Z76EpFoysgyuFwc6xbTYAjExUU0Y3K4d3GrSG6GE96ppmf6Pov7BWKa3p6KIxuolBlpz3cJ5xxgl1BHcKI47IeSrNIJUXZlpRjHle9ndxE6tZ2q6/MiLyHijSNB77uEf3rX4hiitETXRBbUCiktFXYPsPMFtQW3BbCtuH2dW6bctuG2zYc5ngT5dEgVqe9oR/nwMIoGWYAX32fF3exMvMpH8ypJ0+Apjx6DY0ZBjmxPNfcxk/0Xwl/ua44bhNJGqMW2XTtoLa+MWY1ouuQ7UekO4y4RCarhiTcXR6SihVEyjW8tXNYx9p6TNFgLAxl/pi/SyMyusOIK/m6w4CSfxQST44rRTkpdQPlV7ptiWShxrnWFuYh4WmhJ0iAZkgHZFwg4kHhUAS6gIhAXMAtcZHUpYOYAxUcMeQi3Y4wZFRDuPAPd0xnEgnoTD91QCMRgYE4EgwRo1EcgR4ho5WgoZRBCyGQgJf08ITqLphEXMIdcxGHOWqFdAg0ZPAi3MPwFDGCmH6ZOIhKJHV/hGtFl66eOnRJkcRIEt0h6DTos9VlaO8ipqmRJbuiZDItWiwKxmF1WaST6hIagzGam7wOA7iL9fMEI1Q8Gr17MHprdAXjDhu0jdnbndLa7tEuOh/t3qPd+7TsnmYO8mcqr5k+yjRc5c2WtnHe+tE4PhrHR+P4aBwfjeOjcXw0jo/G8dE4PhrHvYzjF617A0vsD1QcJaMLjTZCN36sdc4MNEyTAtUZJ/tslPmTqyjIL1RRwFs5euXf+M/9Qs2+g9b1tE3bIE3yv2RpcZ7G03GSIxSkMa7nnMakcU3rWcMNa1TwZoVoVMjGtdM5bgo1aJorGD/N8qq5H4bPdIu5+QBOvkjiu6eZ8q8nadQm4+TY5HFP1DSIozDyk7+CQBuogC+oSuuaHGCV1RWCVBNJs/DiLgcpR7O/qywFRWdMJ7Lvyjvq9HHjP61Xga9Vknt9r/mfA++sqHKlHU3d1KB0SJAlXl8/y5+m8VymDMXn/qSYZiYHD3PINB1nyShWRirMs+BKBdeDdHZhxYHZvl7eTeAO2wkMRobTCCwGFbCKjspyYEvTRs+sboVNG2xa4Eq+orCuJx41LUw5sKVpBQJrp1ZSSioqCa6GiXJj53Cv1JTKhmlx18v+NImK59VNEQXXc1L1C3+ejgdqLjS6wTeRTe7bXYv2MOQBhzk5XpC9k2uVJSouRR0Qn6bT3Gqu6cZMLVRBNIbJtDTa15j+F0zJPg3VKFNlez82myCWq6a2JcTzx7jR1XdZOn6W3LwEgbGVDbWpJnmSB1k00XKJBrCCXKu56IVR7sMCFDbf06oJVAR6oQF+FJpZoMzQbOyjZ/EUKv0wBTWeFlcpyMjzKAbG+OjCj8L/fZegUKFz8N2yFD31BwN/pMA+JOg8A65eQUMYFIyV8QpPFPQJTVFhhDiZjlUWBTV2iXEcgappSbhboW6MdDp4BVa0XoztO3P2Q3Utxo5oyDlhUPrx5Mo3Hmcpz/6dylrsNR2+GA5zVaDZae+IgAbcQUkb1X9KwzZUeaw9WTSOYImGMcc+vKlf9Ac5mOBCXQQAdzLfBLNzr3emsLZM8Ip0jYkCSyP0xTCaqdqAAM+j1yB0bWGb6yMwObgGNzk3M7Cc1RTrqx+iMFRJPVs/AQE1MIOBnFiVmChltakoDQuaAG+MXWqIVgncEoTGlNVgnPXWg9VYMZpoNY2SMV81WHgtWHM08Nb0kS764M3pTEt1dreo1EYXcyMQtM+460qPOB64zq7rGcRw33EcRoignseggQ4UXjcMluGQNuG2Z9Z8uqDiq9m8qCnx5WRRV0jf6dCVtnHsVpb2mrCtpqxVhaNKF8TOqsBwqQoebqhCSccOukAbEv1AqhCk47GfhCgxLvxfjCrM3UUfHK/zKAti9ePZEwSI/aNk/bSoqp/aHst+NijX0/2Uy0TXo7L8tBUM9+XHU7BF8OK7UZoswHcGnCKa88inenlaxG+SxraFf0lsmwEU4EuDpvrgRodQgAOtXWDwnYdQgNusX3FPe2MoPJAQ3QF09Y0uoadvdQkdfadL6Ol7XUJXP2wSFTv/Shj0zPZVjfsWMbGLjK22gbka6bt6Mprnn4BGbJbryqBpC60l94j0GSWcWiGXHmVsfzum/pnYV3Lr5UbjSRwFUVHLaqxV8VlSgM+rjIuXL/iNX4BzqyY6rHiRvMz8JNfnf9rUbA/K4DAgAQh0ttAFo+Ji4oCHKEuIFh57FWIO4cwV3JWCC8nEUlR0sIgFB4OY9Jbi81K5XuvS45hL7IE6YUcS7H42CIUHg1BbeYiwAdSSUnGDGEQ6ruMx6TicOR5mnw9g6jAAq9alo2phcvvUcwWW4H4RLoj0PhtEhoeByIpVaVmzSrjAVeaSSpe4oD7u57MmxYcCV3sNkn3MpCQSwPJAjRj/bAAZHwogC3rCur06WUaQEGIS8BqoXogorhLmB4hXO1Nwvh9aeoNyZIuBLR508RECoiCqA3rQGE68EioPfAKPYeFoFdIuxL0n09rM+uZwmcX6ssUs7jw4t749AG4t5ZFc64hy0HfgEReu8LTXKR+cW98dArcW09q/GLe+PwRuMVBFDNrm6CATlhNPdqqieHh2/XDA7Foy8/fErtkkg9Va56crTzLKL296CCpOe2/+qrJCzX6cpPE/frJnNdr8hcYNH9S8uReL7YYKwctbKvfF4X1clO14ekQWmdpOlF+UnqF+tyNRXrk7VYVve1uVtl7K6X74BuJDsPtzzeW2obWbVRfQc5qt3Qj51nbwo1GRJyhZ3tjSnaxHPkiTKJj42Rx7884HwN88+DIXgfWbD83tftfG2g77aBqpopFKbgy/c4Rm2BpAdIerkLJ6MiPGq9F1pHz0mjTM5dgvsmiGzqr2Z1WrM6qXJgqBkOdJ5nAOjhEQiM5YOcQZh1ku72ufCTPg0sbbpyCmL9WsGEYqDhdkVO+JL8ph4I8n6SVZL4pF3WGdEy9fWy+Nm3fTd4l356IIkajdAF8riHvuXxtJvVbh9yq1q2LNtlglo+LKDlJmLgJ/YoYwz+I0GUXFNATyw/TyDayiP32oPTnvtifoCJFum7IJym6rsu9GYXWkrgtMHZle+UVwZQ7t6YM75X3jMNmDrvb8U7At4N9BhADhgRCOS4gjD9u0rD0F0C2lWy6IwMNLavuJ7Duv7EmB6/UCvbivb/vZd8HZ+WjQWg2Q9yLe2ycho2UtbtOwKgspmCFCkI/gIEI47XXlIDt3nLUDKSDOphRiIyopxg5xDsh/XI/Xq0PA69eTw78+DDh+NRn8bZaec7tknNklYzm81ssBsW0G1RG0wFwwfUCK7b64kAc4NvbQa8sOx5MewhX8ePvAS2tLdZDC8ZhgUu/dE+niQ9KCDYeTDgOvzysrtOnYJTsESH5VJ/zaS8lz/6X628JCYpJrZp0oP8mjLbPcWFFmW2RL5pZ9tqd+bsjYNr5rI+W3PJS5VnB0Wbavv3HbVnCi3DBnUWzMZ5e5yqLh/BNF89Ed7lUYlgoMsX1WmJP+yEiZ7BNutsgolpLKMolI+twT5gfhPO5RAp59c3tjd+SqNX4jdnQn7Oh+2DH7iSCzXwjqYg18ldZXHxRSzD4p+KjjAICcCokZdqt9dbALlDmSOcID603F/vA1Av9N6KnZBn+tDZ9u/mvHD9ZZ0C4mXOYy+MPLb/aAEMKJFIxRxyOYeUTwVRAu7xkOweC+8i/fjFT6U7l1aJUQ/QFR9HtkIEVHyNrU440fa7X601TczL/akn3muhzCfyl1Ck24q+Ov8mNGwZp+8u4C2aZuK6vCd7IqfM848xDFEneLJe0LLoleFjjh4ARWZoU7mBAQU0Y8QYW3nVWxafS1G3LnS6AFUbYeNJMpn/vZUfZhTh2hzi+02U1/yfy3APvjCnAWPcmwo/cAWulv7Qe0jta4Zf6b9l3aPubW6Tjqn42IhoDTegFR2pNcEJBSAFpC8WJTOqB5vOTFngJBy91Ya67kA2dbuzh8p/cdFvm77niJbD5d+Bp/NdvNxs8C15+28jXVtkDr4Enn9sD7n9dDYz79r1kPrReWEdpnQhKPcw+DRWRc7JeSqQ6uVDaVLy4122ykuzYWdjqhJduo9IovdrNgDpk+XGOfxnF6+59qGKuZAWTbIGkzestG9f3bnVB6u4gS7jOPSs+D8FN6rkP5npkznYld4RB4W6Nk9WTtjxt8MErsAUA630rFureQ37/bCcB3y9/YCweDpWFUOh53PSn3A7Dt0mk4awD5tgDK8uBh93GVe0NQ7Irgsj9dZJdv/HjUh3V0lCaVSx1fTv77S/o78KeDNP/y/Vt9lUeJvtrGqV7sdAkpTIkDsZunT7GCbdxk7Ey52q9eKyf/7hi9FIzGbyLg8icRIOZ0jdegN/s84cotfyLBofv/QsLu3vjqM4w7/izE/RmR+/jxks5gz0jSslzqWO/9O3SM3v97LqWm7gjhvoBn87bvf7btbIT4gbLdmNOGcJF9YLi4zI9cBZdvAmgBTK5Y0kls5ofb0NLub4EciIiwjokwxO4QqbOO6HejS7KRnE5cm2iWKG9P0CIZTt/hoMgcNJoKKaUnOvxizJvZ713peP/zpV8S8n//A/KnaYCLY5RsM2fz9nYu4w42YMOM39Yz/tJMWU/idzBjutWM3y7PeNl94tsnlreZ8bt6xnquJZctHVvM+N3yjFf5C/c0Yf1TZFkaXyblrH/7z2la/Ie1Hq/8n9Ap0to3BKMEqyWxhU5c6afBKbLN4XGd3bJP/lBXmA3hFc9p/fyo1VH9+LR+3Ew51dX23y7OtvJJcxr3cbS2iEY7f0Kv0lKxf1LpQ5LSAkNUyz0CgiMwrc4PYSww86TrUm1jMFuVPjpu/qCbvq/+dztf/z9QSwcIcesyZlsPAAALaAAAUEsBAhQAFAAICAgABqNLQUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAAGo0tBcesyZlsPAAALaAAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAPMPAAAAAA==" language=es />
+
<center><ggb_applet width="820" height="480"  version="4.4" ggbBase64="UEsDBBQACAgIAAajS0EAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAAGo0tBAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1dbXPcuJH+vPkVqPmQ2iTWCO8k96RNydo3Vzlx6uRLpbKVU3FIzIgWh5yQHGlkZ6vuL62df3DffX/pGgDJIWc4r5a8Hq+2bIMkQADdT3ejuwHOnvxxNo7RjcryKE1Oe6SPe0glQRpGyei0Ny2GR27vj1//5mSk0pEaZD4aptnYL057XLeMwtMeGyiHYxYehe5AHfGhEx75KiRH2B8KEfoKe9LrITTLo6+S9M/+WOUTP1AXwZUa+8/TwC/MwFdFMfnq+Pj29rZfDdVPs9HxaDToz/Kwh2CaSX7aKy++gu5aL90y05xiTI7/9qfntvujKMkLPwlUD2kSptHXv/ni5DZKwvQW3UZhcQUEY0Z76EpFoysgyuFwc6xbTYAjExUU0Y3K4d3GrSG6GE96ppmf6Pov7BWKa3p6KIxuolBlpz3cJ5xxgl1BHcKI47IeSrNIJUXZlpRjHle9ndxE6tZ2q6/MiLyHijSNB77uEf3rX4hiitETXRBbUCiktFXYPsPMFtQW3BbCtuH2dW6bctuG2zYc5ngT5dEgVqe9oR/nwMIoGWYAX32fF3exMvMpH8ypJ0+Apjx6DY0ZBjmxPNfcxk/0Xwl/ua44bhNJGqMW2XTtoLa+MWY1ouuQ7UekO4y4RCarhiTcXR6SihVEyjW8tXNYx9p6TNFgLAxl/pi/SyMyusOIK/m6w4CSfxQST44rRTkpdQPlV7ptiWShxrnWFuYh4WmhJ0iAZkgHZFwg4kHhUAS6gIhAXMAtcZHUpYOYAxUcMeQi3Y4wZFRDuPAPd0xnEgnoTD91QCMRgYE4EgwRo1EcgR4ho5WgoZRBCyGQgJf08ITqLphEXMIdcxGHOWqFdAg0ZPAi3MPwFDGCmH6ZOIhKJHV/hGtFl66eOnRJkcRIEt0h6DTos9VlaO8ipqmRJbuiZDItWiwKxmF1WaST6hIagzGam7wOA7iL9fMEI1Q8Gr17MHprdAXjDhu0jdnbndLa7tEuOh/t3qPd+7TsnmYO8mcqr5k+yjRc5c2WtnHe+tE4PhrHR+P4aBwfjeOjcXw0jo/G8dE4PhrHvYzjF617A0vsD1QcJaMLjTZCN36sdc4MNEyTAtUZJ/tslPmTqyjIL1RRwFs5euXf+M/9Qs2+g9b1tE3bIE3yv2RpcZ7G03GSIxSkMa7nnMakcU3rWcMNa1TwZoVoVMjGtdM5bgo1aJorGD/N8qq5H4bPdIu5+QBOvkjiu6eZ8q8nadQm4+TY5HFP1DSIozDyk7+CQBuogC+oSuuaHGCV1RWCVBNJs/DiLgcpR7O/qywFRWdMJ7Lvyjvq9HHjP61Xga9Vknt9r/mfA++sqHKlHU3d1KB0SJAlXl8/y5+m8VymDMXn/qSYZiYHD3PINB1nyShWRirMs+BKBdeDdHZhxYHZvl7eTeAO2wkMRobTCCwGFbCKjspyYEvTRs+sboVNG2xa4Eq+orCuJx41LUw5sKVpBQJrp1ZSSioqCa6GiXJj53Cv1JTKhmlx18v+NImK59VNEQXXc1L1C3+ejgdqLjS6wTeRTe7bXYv2MOQBhzk5XpC9k2uVJSouRR0Qn6bT3Gqu6cZMLVRBNIbJtDTa15j+F0zJPg3VKFNlez82myCWq6a2JcTzx7jR1XdZOn6W3LwEgbGVDbWpJnmSB1k00XKJBrCCXKu56IVR7sMCFDbf06oJVAR6oQF+FJpZoMzQbOyjZ/EUKv0wBTWeFlcpyMjzKAbG+OjCj8L/fZegUKFz8N2yFD31BwN/pMA+JOg8A65eQUMYFIyV8QpPFPQJTVFhhDiZjlUWBTV2iXEcgappSbhboW6MdDp4BVa0XoztO3P2Q3Utxo5oyDlhUPrx5Mo3Hmcpz/6dylrsNR2+GA5zVaDZae+IgAbcQUkb1X9KwzZUeaw9WTSOYImGMcc+vKlf9Ac5mOBCXQQAdzLfBLNzr3emsLZM8Ip0jYkCSyP0xTCaqdqAAM+j1yB0bWGb6yMwObgGNzk3M7Cc1RTrqx+iMFRJPVs/AQE1MIOBnFiVmChltakoDQuaAG+MXWqIVgncEoTGlNVgnPXWg9VYMZpoNY2SMV81WHgtWHM08Nb0kS764M3pTEt1dreo1EYXcyMQtM+460qPOB64zq7rGcRw33EcRoignseggQ4UXjcMluGQNuG2Z9Z8uqDiq9m8qCnx5WRRV0jf6dCVtnHsVpb2mrCtpqxVhaNKF8TOqsBwqQoebqhCSccOukAbEv1AqhCk47GfhCgxLvxfjCrM3UUfHK/zKAti9ePZEwSI/aNk/bSoqp/aHst+NijX0/2Uy0TXo7L8tBUM9+XHU7BF8OK7UZoswHcGnCKa88inenlaxG+SxraFf0lsmwEU4EuDpvrgRodQgAOtXWDwnYdQgNusX3FPe2MoPJAQ3QF09Y0uoadvdQkdfadL6Ol7XUJXP2wSFTv/Shj0zPZVjfsWMbGLjK22gbka6bt6Mprnn4BGbJbryqBpC60l94j0GSWcWiGXHmVsfzum/pnYV3Lr5UbjSRwFUVHLaqxV8VlSgM+rjIuXL/iNX4BzqyY6rHiRvMz8JNfnf9rUbA/K4DAgAQh0ttAFo+Ji4oCHKEuIFh57FWIO4cwV3JWCC8nEUlR0sIgFB4OY9Jbi81K5XuvS45hL7IE6YUcS7H42CIUHg1BbeYiwAdSSUnGDGEQ6ruMx6TicOR5mnw9g6jAAq9alo2phcvvUcwWW4H4RLoj0PhtEhoeByIpVaVmzSrjAVeaSSpe4oD7u57MmxYcCV3sNkn3MpCQSwPJAjRj/bAAZHwogC3rCur06WUaQEGIS8BqoXogorhLmB4hXO1Nwvh9aeoNyZIuBLR508RECoiCqA3rQGE68EioPfAKPYeFoFdIuxL0n09rM+uZwmcX6ssUs7jw4t749AG4t5ZFc64hy0HfgEReu8LTXKR+cW98dArcW09q/GLe+PwRuMVBFDNrm6CATlhNPdqqieHh2/XDA7Foy8/fErtkkg9Va56crTzLKL296CCpOe2/+qrJCzX6cpPE/frJnNdr8hcYNH9S8uReL7YYKwctbKvfF4X1clO14ekQWmdpOlF+UnqF+tyNRXrk7VYVve1uVtl7K6X74BuJDsPtzzeW2obWbVRfQc5qt3Qj51nbwo1GRJyhZ3tjSnaxHPkiTKJj42Rx7884HwN88+DIXgfWbD83tftfG2g77aBqpopFKbgy/c4Rm2BpAdIerkLJ6MiPGq9F1pHz0mjTM5dgvsmiGzqr2Z1WrM6qXJgqBkOdJ5nAOjhEQiM5YOcQZh1ku72ufCTPg0sbbpyCmL9WsGEYqDhdkVO+JL8ph4I8n6SVZL4pF3WGdEy9fWy+Nm3fTd4l356IIkajdAF8riHvuXxtJvVbh9yq1q2LNtlglo+LKDlJmLgJ/YoYwz+I0GUXFNATyw/TyDayiP32oPTnvtifoCJFum7IJym6rsu9GYXWkrgtMHZle+UVwZQ7t6YM75X3jMNmDrvb8U7At4N9BhADhgRCOS4gjD9u0rD0F0C2lWy6IwMNLavuJ7Duv7EmB6/UCvbivb/vZd8HZ+WjQWg2Q9yLe2ycho2UtbtOwKgspmCFCkI/gIEI47XXlIDt3nLUDKSDOphRiIyopxg5xDsh/XI/Xq0PA69eTw78+DDh+NRn8bZaec7tknNklYzm81ssBsW0G1RG0wFwwfUCK7b64kAc4NvbQa8sOx5MewhX8ePvAS2tLdZDC8ZhgUu/dE+niQ9KCDYeTDgOvzysrtOnYJTsESH5VJ/zaS8lz/6X628JCYpJrZp0oP8mjLbPcWFFmW2RL5pZ9tqd+bsjYNr5rI+W3PJS5VnB0Wbavv3HbVnCi3DBnUWzMZ5e5yqLh/BNF89Ed7lUYlgoMsX1WmJP+yEiZ7BNutsgolpLKMolI+twT5gfhPO5RAp59c3tjd+SqNX4jdnQn7Oh+2DH7iSCzXwjqYg18ldZXHxRSzD4p+KjjAICcCokZdqt9dbALlDmSOcID603F/vA1Av9N6KnZBn+tDZ9u/mvHD9ZZ0C4mXOYy+MPLb/aAEMKJFIxRxyOYeUTwVRAu7xkOweC+8i/fjFT6U7l1aJUQ/QFR9HtkIEVHyNrU440fa7X601TczL/akn3muhzCfyl1Ck24q+Ov8mNGwZp+8u4C2aZuK6vCd7IqfM848xDFEneLJe0LLoleFjjh4ARWZoU7mBAQU0Y8QYW3nVWxafS1G3LnS6AFUbYeNJMpn/vZUfZhTh2hzi+02U1/yfy3APvjCnAWPcmwo/cAWulv7Qe0jta4Zf6b9l3aPubW6Tjqn42IhoDTegFR2pNcEJBSAFpC8WJTOqB5vOTFngJBy91Ya67kA2dbuzh8p/cdFvm77niJbD5d+Bp/NdvNxs8C15+28jXVtkDr4Enn9sD7n9dDYz79r1kPrReWEdpnQhKPcw+DRWRc7JeSqQ6uVDaVLy4122ykuzYWdjqhJduo9IovdrNgDpk+XGOfxnF6+59qGKuZAWTbIGkzestG9f3bnVB6u4gS7jOPSs+D8FN6rkP5npkznYld4RB4W6Nk9WTtjxt8MErsAUA630rFureQ37/bCcB3y9/YCweDpWFUOh53PSn3A7Dt0mk4awD5tgDK8uBh93GVe0NQ7Irgsj9dZJdv/HjUh3V0lCaVSx1fTv77S/o78KeDNP/y/Vt9lUeJvtrGqV7sdAkpTIkDsZunT7GCbdxk7Ey52q9eKyf/7hi9FIzGbyLg8icRIOZ0jdegN/s84cotfyLBofv/QsLu3vjqM4w7/izE/RmR+/jxks5gz0jSslzqWO/9O3SM3v97LqWm7gjhvoBn87bvf7btbIT4gbLdmNOGcJF9YLi4zI9cBZdvAmgBTK5Y0kls5ofb0NLub4EciIiwjokwxO4QqbOO6HejS7KRnE5cm2iWKG9P0CIZTt/hoMgcNJoKKaUnOvxizJvZ713peP/zpV8S8n//A/KnaYCLY5RsM2fz9nYu4w42YMOM39Yz/tJMWU/idzBjutWM3y7PeNl94tsnlreZ8bt6xnquJZctHVvM+N3yjFf5C/c0Yf1TZFkaXyblrH/7z2la/Ie1Hq/8n9Ap0to3BKMEqyWxhU5c6afBKbLN4XGd3bJP/lBXmA3hFc9p/fyo1VH9+LR+3Ew51dX23y7OtvJJcxr3cbS2iEY7f0Kv0lKxf1LpQ5LSAkNUyz0CgiMwrc4PYSww86TrUm1jMFuVPjpu/qCbvq/+dztf/z9QSwcIcesyZlsPAAALaAAAUEsBAhQAFAAICAgABqNLQUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAAGo0tBcesyZlsPAAALaAAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAPMPAAAAAA==" language=es /> </center>

Revisión actual del 21:46 12 ago 2020

Tutorial: Resolver Problemas Ilustrándolos Diseño del Centro Babbage

Planteo

¿Cómo harían para…

... contrastar los resultados provenientes del registro gráfico y del algebraico trigonométrico de los valores de áreas y amplitudes de ángulos?

Ilustrando un Problema

El escenario que ilustra el problema amplía el original con la posibilidad de modificar el número y la longitud de los lados del polígono regular en juego.


La Tool Relation between Two Objects.gif Herramienta de Relación será el recurso clave para llevar adelante el control adecuado -vinculando cada ángulo y cada área en uno y otro registro- en la dinámica figura que se despliega a continuación.


© 2021 International GeoGebra Institute