Función Raízn
De GeoGebra Manual
Funciones y Operaciones
- raízn( <Expresión> , N (número natural) )
- Calcula la raíz eNésima de la expresión dada.
- Ejemplos:
raízn(x^8, 2)
da por resultado (|x|)⁴ y la representación correspondiente en la Vista Gráficaraízn(16, 4)
da por resultado 2.
![]() |
Al ingresar una expresión que resulte dependiente el resultado, expresado en forma algebraica, es ademàs, gráficado. Como se ilustra a continuación. |
- Nota:
Para acceder directamente a cualquiera de las Funciones Predefinidas basta con:
Desplegarlas y expandir su listado pulsando el signo +
seleccionar la que corresponda y pulsar en el botón Pega. - Ejemplos:
p_1(x) = k raízn(k x,k)
, siendo k un valor determinado por un deslizador, traza el gráfico acorde a la correspondiente expresión. Es interesante notar el modo en que gráfico y expresión resultante cambian a medida que se modifica (manualmente o por animación) el valor de k.raízn(x^x(J) / x⁴ sen(y(J)x)^y(J), 4)
siendo J un punto, traza el gráfico acorde a la correspondiente expresión resultante, según la posición de J, como, por ejemplo:
$\sqrt[4]{\frac{x³ sen(-2x)² }{x⁴\;}\;}$
A continuaciòn se expone una secuencia de expresiones según distintos valores de las coordenadas de J en una parsimoniosa animaciòn.
$\mathbf{\frac{1}{\left|x\right|}} \; \; \; \; \; \; \mathbf{\frac{\sqrt[4]{\frac{\operatorname{sen} \left( x \right)}{x}}}{\left|x\right|}} \; \; \; \; \; \; \mathbf{\frac{\sqrt[4]{\frac{\operatorname{sen} ^{2}\left( 2 \; x \right)}{x^{2}}}}{\left|x\right|}} \; \; \; \; \; \; \mathbf{\frac{\sqrt[4]{\frac{\operatorname{sen} ^{3}\left( 3 \; x \right)}{x^{3}}}}{\left|x\right|}} \; \; \; \; \; \; \mathbf{\frac{\left|\operatorname{sen} \left( 4 \; x \right)\right|}{x^{2}}} $ - Nota:
Es interesante notar que en este caso, en lugar de un Herramienta de Deslizador se emplean las coordenadas de un punto para notar las modificaciones que sufre la función.
Al respecto, si el punto J se ubicara sobre uno de los ejes, al darle animación se estarían observando los cambios del gráfico en función ya no exclusivamente de x ni sólo en el efecto sobre los valores de y sino de una variable adicional, dinámica .
En Vista CAS ComputaciónAlgebraicaSimbólica
En esta vista, se admiten formulaciones que contengan literales para operar simbólicamente y/o de aquellas con soluciones o raíces no reales.
- Nota:
Ver también la sección de Operadores y Funciones Predefinidas.