Diferencia entre revisiones de «Comando MCD»

De GeoGebra Manual
Saltar a: navegación, buscar
Línea 7: Línea 7:
 
;MCD[ <Lista de Polinomios> ]
 
;MCD[ <Lista de Polinomios> ]
 
}}-->
 
}}-->
===[[Image:View-cas24.png]] [[Comandos Exclusivos CAS (Cálculo Avanzado)|En]] [[Vista CAS|Vista CAS '''C'''<sub><small>omputación</small></sub>'''A'''<sub><small>lgebraica</small></sub>'''S'''<sub><small>imbólica</small></sub>]]===
+
===[[Image:Menu view cas.svg|link=Vista CAS|18px]] [[Comandos Exclusivos CAS (Cálculo Avanzado)|En]] [[Vista CAS|Vista CAS '''C'''<sub><small>omputación</small></sub>'''A'''<sub><small>lgebraica</small></sub>'''S'''<sub><small>imbólica</small></sub>]]===
 
MCD obra del modo descripto, admitiendo literales en operaciones simbólicas Se añaden, exclusivas de esta [[Vista CAS|vista]], variantes destinadas a polinomios.  
 
MCD obra del modo descripto, admitiendo literales en operaciones simbólicas Se añaden, exclusivas de esta [[Vista CAS|vista]], variantes destinadas a polinomios.  
  

Revisión del 05:51 30 jun 2015


MCD[ <Número (o valor numérico)>, <Número (o valor numérico)>]
Establece el máximo común divisor de los números dados. Así, MCD[a, b] da por resultado el máximo común divisor de a y b.
Ejemplo:
MCD[12, 15] da 3
MCD[ <Lista de Números> ]
Da por resultado el máximo común divisor de la lista de números.
Ejemplo:
MCD[{12, 30, 18}] da 6.

Menu view cas.svg En Vista CAS ComputaciónAlgebraicaSimbólica

MCD obra del modo descripto, admitiendo literales en operaciones simbólicas Se añaden, exclusivas de esta vista, variantes destinadas a polinomios.

MCD[ <Polinomio>, <Polinomio> ]
Establece el mayor divisor común entre los dos polinomios
MCD[ <Lista de Polinomios> ]
Establece el mayor divisor común del conjunto de los listados.
Ejemplos: En esta vista...
  • MCD[x^2 + 4 x + 4, x^2 - x - 6] da x + 2
  • MCD[{x^2 + 4 x + 4, x^2 - x - 6, x^3 - 4x^2 - 3x + 18}] da x + 2
  • MCD[{21 + 7 k - 14, 2 (k^2 - 1), 3 (k + 1), ( k^2 + 2 k + 1)}] da k + 1

Nota: Ver también los comandos...
© 2021 International GeoGebra Institute