Comando Icosaedro

De GeoGebra Manual
Revisión del 20:03 8 oct 2017 de Zbynek (discusión | contribs.) (Texto reemplazado: «;([a-zA-Z0-9]*)\[(.*)\]» por «;$1($2)»)
Saltar a: navegación, buscar


GGb5.png En la Menu view graphics3D.png Vista 3D de la versión View-graphics3D24.png5
Icosaedro( <Punto>, <Punto>, <Dirección> )
Crea un icosaedro regular convexo de modo tal que la cara cuya arista tiene vértices en uno y otro punto, ocupará el plano...
  • o perpendicular al conformado con una dirección dada por un vector, segmento, semirrecta
  • o paralelo al conformado con una dirección dada por un polígono u otra superficie plana.
Nota: Los vértices restantes a los establecidos por uno y otro punto dado, quedan unívocamente determinados por la dirección.
Así, en Icosaedro[A, B, dir ] tal dirección queda fijada por:
  • un vector, segmento, recta, semi-recta ortogonal a AB, o
  • un polígono, un plano paralelo a AB.
GGb5.png En la Menu view graphics3D.png Vista 3D de la versión View-graphics3D24.png5
Icosaedro( <Punto>, <Punto>, <Punto> )
Crea un icosaedro regular convexo con vértices en uno y otro punto en una cara. Los puntos deben determinar un triángulo equilátero para que el icosaedro que definido.
GGb5.png En la Menu view graphics3D.png Vista 3D de la versión View-graphics3D24.png5
Icosaedro( <Punto>, <Punto> )
Crea un icosaedro regular convexo cuya arista tiene vértices en uno y otro punto y una cara contenida en el plano paralelo a xOy.
Nota: Esta sintaxis, respecto de la precedente, es un abreviatura que opera como:
Icosaedro[ <Punto>, <Punto>, PlanoxOy] por lo que la dirección se orienta según el xOy: la recta que pasa por sendos puntos resulta paralela al plano xOy.
Por eso, Icosaedro[A, B] no es sino Icosaedro[A, B, PlanoxOy].
Así, Icosaedro[A, B] implica que A y B son puntos 2D o, lo que es análogo, A y B son puntos 3D del mismo lado.
Bulbgraph.pngAtención:

Icosaedro[A, B] equivale a Icosaedro[A, B, C] siendo C C = Punto[Circunferencia[PuntoMedio[A, B], Distancia[A, B] sqrt(3) / 2, Segmento[A, B]]]

Se crea, entonces, un icosaedro regular convexo a partir del segmento [AB] como arista y una cara en un plano paralelo al plano xOy
En versiones recientes se puede incluso hacer que el icosaedro pivotee en torno al del eje definido por sendos puntos en desplazamientos al asumir el primer punto suplementario creado.

Nota:
Ver también las herramientas: Mode cube.png Cubo así como los comandos de GG5:
© 2021 International GeoGebra Institute