Diferencia entre revisiones de «Comando Factores»

De GeoGebra Manual
Saltar a: navegación, buscar
Línea 8: Línea 8:
 
:{{Examples|1=<br>'''<code>Factores[1024]</code>''' da por resultado ''<nowiki>(2, 10)</nowiki>'' porque  ''1024=2<sup>10</sup>''<br>'''<code>Factores[42]</code>''' da ''{{2, 1}, {3, 1}, {7, 1}}'' que equivale a <math>\left( \begin{array}{} 2 & 1 \\ 3 & 1 \\7 & 1 \\ \end{array}  \right)</math><br>Esto se corresponde con que '''''42 = 2<sup>1</sup>  *  3<sup>1</sup>  * 7<sup>1</sup>'''''}}
 
:{{Examples|1=<br>'''<code>Factores[1024]</code>''' da por resultado ''<nowiki>(2, 10)</nowiki>'' porque  ''1024=2<sup>10</sup>''<br>'''<code>Factores[42]</code>''' da ''{{2, 1}, {3, 1}, {7, 1}}'' que equivale a <math>\left( \begin{array}{} 2 & 1 \\ 3 & 1 \\7 & 1 \\ \end{array}  \right)</math><br>Esto se corresponde con que '''''42 = 2<sup>1</sup>  *  3<sup>1</sup>  * 7<sup>1</sup>'''''}}
 
{{Note|1=Ver también los comandos [[Comando FactoresPrimos|FactoresPrimos]] y [[Comando Factoriza|Factoriza]].}}
 
{{Note|1=Ver también los comandos [[Comando FactoresPrimos|FactoresPrimos]] y [[Comando Factoriza|Factoriza]].}}
 
+
<br>
En la [[File:Menu view cas.svg|link=|16px]] [[Vista CAS] las variables indeterminadas pueden utilizarse como entradas y los resultados serán matrices.
+
{{Note|1=En la [[File:Menu view cas.svg|link=|16px]] [[Vista CAS]] las variables indeterminadas pueden utilizarse como entradas y los resultados serán matrices.
  
 
:{{example| 1=<code><nowiki>Factores[a^8 - 1]</nowiki></code> da por resultado <math>\left( \begin{array}{} a - 1 & 1 \\ a +1 & 1 \\a^2 + 1& 1 \\a^4 + 1& 1 \\ \end{array}  \right)</math>.}}
 
:{{example| 1=<code><nowiki>Factores[a^8 - 1]</nowiki></code> da por resultado <math>\left( \begin{array}{} a - 1 & 1 \\ a +1 & 1 \\a^2 + 1& 1 \\a^4 + 1& 1 \\ \end{array}  \right)</math>.}}
 +
}}

Revisión del 20:49 22 ago 2017



Factores[ <Polinomio> ]
Da por resultado la lista de listas { factor, exponente} tal que el producto de todos estos factores elevados a los correspondientes exponentes es igual al polinomio dado. Los factores se ordenan por su grado, en forma creciente.
Ejemplo:
Factores[x^8 - 1] da por resultado {{x^4 + 1, 1}, {x^2 + 1, 1}, {x + 1, 1}, {x - 1, 1}}
Nota: No todos los factores serán irreducibles en los reales.
Factores[ <Número> ]
Da por resultado una matriz del tipo \left( \begin{array}{} primo_1 & exponente_1 \\ primo_2 & exponente_2 \\primo_3 & exponente_3 \\ \end{array} \right) tal que el producto de todos estos números primos elevados a los correspondientes exponentes da por resultado el número indicado. Los números primos se disponen en orden ascendente.
Ejemplos:
Factores[1024] da por resultado (2, 10) porque 1024=210
Factores[42] da {{2, 1}, {3, 1}, {7, 1}} que equivale a \left( \begin{array}{} 2 & 1 \\ 3 & 1 \\7 & 1 \\ \end{array} \right)
Esto se corresponde con que 42 = 21 * 31 * 71
Nota: Ver también los comandos FactoresPrimos y Factoriza.


Nota: En la Menu view cas.svg Vista CAS las variables indeterminadas pueden utilizarse como entradas y los resultados serán matrices.
Ejemplo: Factores[a^8 - 1] da por resultado \left( \begin{array}{} a - 1 & 1 \\ a +1 & 1 \\a^2 + 1& 1 \\a^4 + 1& 1 \\ \end{array} \right).
© 2021 International GeoGebra Institute