Difference between revisions of "Vertex Command"

From GeoGebra Manual
Jump to: navigation, search
Line 10: Line 10:
 
:{{example|1=<br>
 
:{{example|1=<br>
 
:*<code>Vertex[(x + y < 3) && (x - y > 1)]</code> returns point ''A = (2, 1)''.
 
:*<code>Vertex[(x + y < 3) && (x - y > 1)]</code> returns point ''A = (2, 1)''.
:*<code>{Vertex[(x + y < 3) ∧ (x - y > 1) && (y > - 2)]}</code> returns list ''list1 = {(2, 1), (5, -2), (-1, -2)}''.
+
:*<code>{Vertex[(x + y < 3) ∧ (x - y > 1) && (y > - 2)]}</code> returns ''list1 = {(2, 1), (5, -2), (-1, -2)}''.
 
:*<code>Vertex[(y > x²) ∧ (y < x)]</code>  returns two points ''A = (0, 0)'' and ''B = (1, 1)''.
 
:*<code>Vertex[(y > x²) ∧ (y < x)]</code>  returns two points ''A = (0, 0)'' and ''B = (1, 1)''.
:*<code>{Vertex[(y > x²) ∧ (y < x)]}</code> returns list  ''list1 = {(0, 0), (1, 1)}''.}}
+
:*<code>{Vertex[(y > x²) ∧ (y < x)]}</code> returns ''list1 = {(0, 0), (1, 1)}''.}}
  
  

Revision as of 10:19, 12 July 2013



Vertex[ <Conic> ]
Returns (all) vertices of the conic section.


Vertex[ <Inequality> ]
Returns the points of intersection of the borders.
Example:
  • Vertex[(x + y < 3) && (x - y > 1)] returns point A = (2, 1).
  • {Vertex[(x + y < 3) ∧ (x - y > 1) && (y > - 2)]} returns list1 = {(2, 1), (5, -2), (-1, -2)}.
  • Vertex[(y > x²) ∧ (y < x)] returns two points A = (0, 0) and B = (1, 1).
  • {Vertex[(y > x²) ∧ (y < x)]} returns list1 = {(0, 0), (1, 1)}.


Vertex[ <Polygon> ]
Returns (all) vertices of the polygon.


Vertex[ <Polygon>, <Index> ]
Returns n-th vertex of the polygon.
Note: To get vertices of the polygon / conic as list, use {Vertex[t]}.
© 2021 International GeoGebra Institute