Difference between revisions of "Vertex Command"

From GeoGebra Manual
Jump to: navigation, search
Line 2: Line 2:
  
 
{{command|geometry}}
 
{{command|geometry}}
; Vertex[ <Conic> ]: Returns (all) vertices of the conic section.
+
;Vertex[ <Conic> ]:Returns (all) vertices of the conic section.
  
; Vertex[ <Polygon> ]: Returns (all) vertices of the polygon.
+
;Vertex[ <Polygon> ]:Returns (all) vertices of the polygon.
  
; Vertex[ <Polygon>, <Number  n> ]: Returns ''n''-th vertex of the polygon.
+
;Vertex[ <Polygon>, <Number  n> ]:Returns ''n''-th vertex of the polygon.
  
 
{{Note|1=To get vertices of the polygon / conic as [[Lists|list]], use <code>{Vertex[t]}</code>.}}
 
{{Note|1=To get vertices of the polygon / conic as [[Lists|list]], use <code>{Vertex[t]}</code>.}}
  
{{betamanual|version=4.2|
+
{{betamanual|version=4.2|;Vertex[ <Inequality> ]:Returns the points of intersection of the borders
;Vertex[ <Inequality> ] : Returns the points of intersection of the borders
+
:{{example|1=<br><code>Vertex[(x + y < 3) && (x - y > 1)]</code> returns point (2,1)<br><code>{Vertex[(x + y < 3) ∧ (x - y > 1)&& (y>-2)]}</code> returns list <nowiki> {(2, 1), (5, -2), (-1, -2)}</nowiki><br><code>Vertex[(y > x²) ∧ (y < x)]</code>  returns two points (0, 0) and (1, 1)<br><code>{Vertex[(y > x²) ∧ (y < x)]}</code>  returns list <nowiki>  {(0, 0), (1, 1)}.</nowiki>}}}}
:{{example|1=<div>
 
::<code>Vertex[(x + y < 3) && (x - y > 1)]</code> returns point (2,1) ;
 
::<code> {Vertex[(x + y < 3) ∧ (x - y > 1)&& (y>-2)]}</code> returns list <nowiki> {(2, 1), (5, -2), (-1, -2)} ;</nowiki>
 
::<code>Vertex[(y > x²) ∧ (y < x)]</code>  returns two points (0, 0) and (1, 1)
 
::<code>{Vertex[(y > x²) ∧ (y < x)]}</code>  returns list <nowiki>  {(0, 0), (1, 1)}. </nowiki></div>}}}}
 

Revision as of 06:17, 14 November 2012



Vertex[ <Conic> ]
Returns (all) vertices of the conic section.
Vertex[ <Polygon> ]
Returns (all) vertices of the polygon.
Vertex[ <Polygon>, <Number n> ]
Returns n-th vertex of the polygon.
Note: To get vertices of the polygon / conic as list, use {Vertex[t]}.
© 2021 International GeoGebra Institute