# Difference between revisions of "Sector Command"

From GeoGebra Manual

Line 11: | Line 11: | ||

;Sector[ <Conic>, <Parameter Value>, <Parameter Value> ] | ;Sector[ <Conic>, <Parameter Value>, <Parameter Value> ] | ||

− | :Yields a conic sector between two parameter values on the conic section. | + | :Yields a conic sector between two parameter values between ''0'' and ''2π'' on the conic section. |

:{{example|1=<div> Let <code><nowiki>c: x^2 + y^2 = 9</nowiki></code> be a circle. <code><nowiki>Sector[ c, 0, 3/4 π ]</nowiki></code> yields ''d = 10.6''</div>}} | :{{example|1=<div> Let <code><nowiki>c: x^2 + y^2 = 9</nowiki></code> be a circle. <code><nowiki>Sector[ c, 0, 3/4 π ]</nowiki></code> yields ''d = 10.6''</div>}} | ||

:{{Note|1=Internally the following parametric forms are used: | :{{Note|1=Internally the following parametric forms are used: | ||

:*Circle: ''(r cos(t), r sin(t))'' where ''r'' is the circle's radius. | :*Circle: ''(r cos(t), r sin(t))'' where ''r'' is the circle's radius. | ||

:*Ellipse: ''(a cos(t), b sin(t))'' where ''a'' and ''b'' are the lengths of the semimajor and semiminor axes.}} | :*Ellipse: ''(a cos(t), b sin(t))'' where ''a'' and ''b'' are the lengths of the semimajor and semiminor axes.}} |

## Revision as of 10:05, 15 July 2013

- Sector[ <Conic>, <Point>, <Point> ]
- Yields a conic sector between two points on the conic section.
**Example:**- Let
`c: x^2 + 2y^2 = 8`

be an ellipse,`D = (-2.83, 0)`

and`E = (0, -2)`

two points on the ellipse.`Sector[ c, D, E ]`

yields*d = 4.44*. - Let
`c: x^2 + y^2 = 9`

be a circle,`A = (3, 0)`

and`B = (0, 3)`

two points on the circle.`Sector[ c, A, B ]`

yields*d = 7.07*

- Let

**Note:**This works only for a circle or ellipse.

- Sector[ <Conic>, <Parameter Value>, <Parameter Value> ]
- Yields a conic sector between two parameter values between
*0*and*2π*on the conic section. **Example:**Let`c: x^2 + y^2 = 9`

be a circle.`Sector[ c, 0, 3/4 π ]`

yields*d = 10.6*

**Note:**Internally the following parametric forms are used:- Circle:
*(r cos(t), r sin(t))*where*r*is the circle's radius. - Ellipse:
*(a cos(t), b sin(t))*where*a*and*b*are the lengths of the semimajor and semiminor axes.

- Circle: