Predefined Functions and Operators
From GeoGebra Manual
To create numbers, coordinates, or equations using the Input Bar you may also use the following predefined functions and operations. Logic operators and functions are listed in article about Boolean values.
Note: The predefined functions need to be entered using parentheses. You must not put a space between the function name and the parentheses.
Operation / Function  Input 

ℯ (Euler's number)  Alt + e 
ί (Imaginary unit)  Alt + i 
π  Alt + p or pi 
° (Degree symbol)  Alt + o or deg 
Addition  + 
Subtraction   
Multiplication  * or Space key 
Scalar product  * or Space key 
Vector product(see Points and Vectors)  ⊗ 
Division  / 
Exponentiation  ^ or superscript (x^2 or x^{2} )

Factorial  ! 
Parentheses  ( ) 
xcoordinate  x( ) 
ycoordinate  y( ) 
zcoordinate  z( ) 
Argument (also works for 3D points / vectors)  arg( ) 
Conjugate  conjugate( ) 
Real  real( ) 
Imaginary  imaginary( ) 
Absolute value  abs( ) 
Altitude angle (for 3D points / vectors)  alt( ) 
Sign  sgn( ) or sign() 
Greatest integer less than or equal  floor( ) 
Least integer greater than or equal  ceil( ) 
Round  round( ) 
Square root  sqrt( ) 
Cubic root  cbrt( ) 
The nth root of x  nroot(x, n) 
Random number between 0 and 1  random( ) 
Exponential function  exp( ) or ℯ^{x} 
Logarithm (natural, to base e)  ln( ) or log( ) 
Logarithm to base 2  ld( ) 
Logarithm to base 10  lg( ) 
Logarithm of x to base b  log(b, x ) 
Cosine  cos( ) 
Sine  sin( ) 
Tangent  tan( ) 
Secant  sec() 
Cosecant  cosec() 
Cotangent  cot() or cotan() 
Arc cosine (answer in radians)  acos( ) or arccos( ) 
Arc cosine (answer in degrees)  acosd( ) 
Arc sine (answer in radians)  asin( ) or arcsin( ) 
Arc sine (answer in degrees)  asind( ) 
Arc tangent (answer in radians, between π/2 and π/2)  atan( ) or arctan( ) 
Arc tangent (answer in degrees, between 90° and 90°)  atand( ) 
Arc tangent (answer in radians, between π and π)  atan2(y, x) or arcTan2(y, x) 
Arc tangent (answer in degrees, between 180° and 180°)  atan2d(y, x) 
Hyperbolic cosine  cosh( ) 
Hyperbolic sine  sinh( ) 
Hyperbolic tangent  tanh( ) 
Hyperbolic secant  sech( ) 
Hyperbolic cosecant  cosech( ) 
Hyperbolic cotangent  coth( ) or cotanh() 
Antihyperbolic cosine  acosh( ) or arccosh( ) 
Antihyperbolic sine  asinh( ) or arcsinh( ) 
Antihyperbolic tangent  atanh( ) or arctanh( ) 
Beta function Β(a, b)  beta(a, b) 
Incomplete beta function Β(x;a, b)  beta(a, b, x) 
Incomplete regularized beta function I(x; a, b)  betaRegularized(a, b, x) 
Gamma function Γ(x)  gamma( x) 
(Lower) incomplete gamma function γ(a, x)  gamma(a, x) 
(Lower) incomplete regularized gamma function P(a,x) = γ(a, x) / Γ(a)  gammaRegularized(a, x) 
Gaussian Error Function  erf(x) 
Digamma function  psi(x) 
The Polygamma function is the (m+1)th derivative of the natural logarithm of the Gamma function, gamma(x) (m=0,1)  polygamma(m, x) 
The Sine Integral function  sinIntegral(x) 
The Cosine Integral function  cosIntegral(x) 
The Exponential Integral function  expIntegral(x) 
The RiemannZeta function ζ(x)  zeta(x) 
Lambert's W function LambertW(x, branch)  LambertW(x, 0), LambertW(x, 1) 
Note: The x, y, z operators can be used to get corresponding coefficients of a line.