Difference between revisions of "Perimeter Command"

From GeoGebra Manual
Jump to: navigation, search
m
(command syntax: changed [ ] into ( ))
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
<noinclude>{{Manual Page|version=5.0}}</noinclude>{{command|geometry}}
 
<noinclude>{{Manual Page|version=5.0}}</noinclude>{{command|geometry}}
; Perimeter[ <Polygon> ]: Returns the perimeter of the polygon.
+
; Perimeter( <Polygon> ): Returns the perimeter of the polygon.
:{{example|1=<div><code><nowiki>Perimeter[Polygon[(1, 2), (3, 2), (4, 3)]]</nowiki></code> yields ''6.58''.</div>}}
+
:{{example|1=<code><nowiki>Perimeter(Polygon((1, 2), (3, 2), (4, 3)))</nowiki></code> yields ''6.58''.}}
; Perimeter[ <Conic> ]:  If the given conic is a circle or ellipse, this command returns its perimeter. Otherwise the result is undefined.
+
; Perimeter( <Conic> ):  If the given conic is a circle or ellipse, this command returns its perimeter. Otherwise the result is undefined.
:{{example|1=<div><code><nowiki>Perimeter[x^2 + 2y^2 = 1]</nowiki></code> yields ''5.4''.</div>}}
+
:{{example|1=<code><nowiki>Perimeter(x^2 + 2y^2 = 1)</nowiki></code> yields ''5.4''.}}
; Perimeter[ <Locus> ]:  If the given locus is finite, this command returns its approximate perimeter. Otherwise the result is undefined.
+
:{{note|See also [[Circumference Command|Circumference]] command.}}
 +
; Perimeter( <Locus> ):  If the given locus is finite, this command returns its approximate perimeter. Otherwise the result is undefined.

Latest revision as of 10:30, 11 October 2017


Perimeter( <Polygon> )
Returns the perimeter of the polygon.
Example: Perimeter(Polygon((1, 2), (3, 2), (4, 3))) yields 6.58.
Perimeter( <Conic> )
If the given conic is a circle or ellipse, this command returns its perimeter. Otherwise the result is undefined.
Example: Perimeter(x^2 + 2y^2 = 1) yields 5.4.
Note: See also Circumference command.
Perimeter( <Locus> )
If the given locus is finite, this command returns its approximate perimeter. Otherwise the result is undefined.
© 2021 International GeoGebra Institute