Difference between revisions of "PartialFractions Command"

From GeoGebra Manual
Jump to: navigation, search
Line 3: Line 3:
 
;PartialFractions[<Function>]
 
;PartialFractions[<Function>]
 
:Yields the [[w:Partial fraction|partial fraction]] of the given function, if possible. The graph of the function is plotted in [[Graphics View]].  
 
:Yields the [[w:Partial fraction|partial fraction]] of the given function, if possible. The graph of the function is plotted in [[Graphics View]].  
 +
{{example|1=<code>PartialFractions[x^2/(x^2-2x+1)]</code> yields ''1 + <math>\frac{2}{x-1}</math> + <math>\frac{1}{x^2-2x+1}</math>.}}
 
==CAS Syntax==
 
==CAS Syntax==
 
:Yields the [[w:Partial fraction|partial fraction]] of the given function, if possible.
 
:Yields the [[w:Partial fraction|partial fraction]] of the given function, if possible.
  
 
{{example|1=<code>PartialFractions[x^2/(x^2-2x+1)]</code> yields ''1 + <math>\frac{2}{x-1}</math> + <math>\frac{1}{x^2-2x+1}</math>.}}
 
{{example|1=<code>PartialFractions[x^2/(x^2-2x+1)]</code> yields ''1 + <math>\frac{2}{x-1}</math> + <math>\frac{1}{x^2-2x+1}</math>.}}

Revision as of 10:14, 23 August 2011



PartialFractions[<Function>]
Yields the partial fraction of the given function, if possible. The graph of the function is plotted in Graphics View.
Example: PartialFractions[x^2/(x^2-2x+1)] yields 1 + \frac{2}{x-1} + \frac{1}{x^2-2x+1}.

CAS Syntax

Yields the partial fraction of the given function, if possible.
Example: PartialFractions[x^2/(x^2-2x+1)] yields 1 + \frac{2}{x-1} + \frac{1}{x^2-2x+1}.
© 2021 International GeoGebra Institute