Difference between revisions of "ParametricDerivative Command"

From GeoGebra Manual
Jump to: navigation, search
Line 2: Line 2:
 
{{command|function}}
 
{{command|function}}
 
;ParametricDerivative[<Curve x=x(t), y=y(t)>]: Returns a new [[Curves|parametric curve]] given by ''(x(t), <math> \frac{y'(t)}{ x'(t)}</math>)''.
 
;ParametricDerivative[<Curve x=x(t), y=y(t)>]: Returns a new [[Curves|parametric curve]] given by ''(x(t), <math> \frac{y'(t)}{ x'(t)}</math>)''.
:{{example|1=<code>ParametricDerivative[Curve[2t, t², t, 0, 10]]</code> (which equates to function ''f(x)=<math> \frac{x²}{4}</math>)'' returns the parametric curve ''(x(t)=2t,y(t)=t)'' (which equates to the derivative of the function ''f'(x)=<math> \frac{x}{2}</math>). }}
+
:{{example|1=<code>ParametricDerivative[Curve[2t, t², t, 0, 10]]</code> (the curve equates to function ''f(x)=<math> \frac{x²}{4}</math>)'' returns the parametric curve ''(x(t)=2t,y(t)=t)'' (which equates to the derivative of the function ''f'(x)=<math> \frac{x}{2}</math>). }}

Revision as of 15:17, 10 July 2012


ParametricDerivative[<Curve x=x(t), y=y(t)>]
Returns a new parametric curve given by (x(t), \frac{y'(t)}{ x'(t)}).
Example: ParametricDerivative[Curve[2t, t², t, 0, 10]] (the curve equates to function f(x)= \frac{x²}{4}) returns the parametric curve (x(t)=2t,y(t)=t) (which equates to the derivative of the function f'(x)= \frac{x}{2}).
© 2021 International GeoGebra Institute