Difference between revisions of "ParametricDerivative Command"

From GeoGebra Manual
Jump to: navigation, search
(@Andreas: I think that the text is smoother now, feel free to revert it to yours if you don't like it ;))
Line 2: Line 2:
 
{{command|function}}
 
{{command|function}}
 
;ParametricDerivative[<Curve x=x(t), y=y(t)>]: Returns a new [[Curves|parametric curve]] given by ''<math> \left( x(t), \frac{y'(t)}{ x'(t)} \right) </math>''.
 
;ParametricDerivative[<Curve x=x(t), y=y(t)>]: Returns a new [[Curves|parametric curve]] given by ''<math> \left( x(t), \frac{y'(t)}{ x'(t)} \right) </math>''.
:{{example|1=<code>ParametricDerivative[Curve[2t, t², t, 0, 10]]</code> (the curve equates to function ''f(x)=<math> \frac{x²}{4}</math>)'' returns the parametric curve ''(x(t)=2t,y(t)=t)'' (which equates to the derivative of the function ''f'(x)=<math> \frac{x}{2}</math>). }}
+
:{{example|1=<code>ParametricDerivative[Curve[2t, t², t, 0, 10]]</code> returns the parametric curve ''(x(t) = 2t, y(t) = t)''. The curve given as argument to the command is the function ''f(x)=<math> \frac{x²}{4}</math>'', and the result is the derivative of that function: ''f'(x)=<math> \frac{x}{2}</math>. }}

Revision as of 11:53, 11 July 2012


ParametricDerivative[<Curve x=x(t), y=y(t)>]
Returns a new parametric curve given by \left( x(t), \frac{y'(t)}{ x'(t)} \right) .
Example: ParametricDerivative[Curve[2t, t², t, 0, 10]] returns the parametric curve (x(t) = 2t, y(t) = t). The curve given as argument to the command is the function f(x)= \frac{x²}{4}, and the result is the derivative of that function: f'(x)= \frac{x}{2}.
© 2021 International GeoGebra Institute