Difference between revisions of "OsculatingCircle Command"

From GeoGebra Manual
Jump to: navigation, search
(added v4)
(* This command is for 2D objects only. For 3D, you can make a custom tool for example https://www.geogebra.org/m/tan7dxjt)
 
(11 intermediate revisions by 5 users not shown)
Line 1: Line 1:
<noinclude>{{Manual Page|version=4.0}}[[Category:Manual (official)|{{PAGENAME}}]]</noinclude>
+
<noinclude>{{Manual Page|version=5.0}}</noinclude>{{command|other}}
{{command|other}}
+
;OsculatingCircle( <Point>, <Function> )
; OsculatingCircle[Point, Function]: Yields the osculating circle of the function in the given point.
+
:Yields the osculating circle of the function in the given point.
; OsculatingCircle[Point, Curve]: Yields the osculating circle of the curve in the given point.
+
:{{example|1=<code><nowiki>OsculatingCircle((0, 0), x^2)</nowiki></code> yields ''x² + y² - y = 0''.}}
 +
;OsculatingCircle( <Point>, <Curve> )
 +
:Yields the osculating circle of the curve in the given point.
 +
:{{example|1=<code><nowiki>OsculatingCircle((1, 0), Curve(cos(t), sin(2t), t, 0, 2π))</nowiki></code> yields ''x² + y² + 6x = 7''.}}
 +
 
 +
 
 +
;OsculatingCircle( <Point>, <Object> )
 +
: Yields the osculating circle of the object (function, curve, conic) in the given point.
 +
:{{examples|1=<div>
 +
:*<code><nowiki>OsculatingCircle((0, 0), x^2)</nowiki></code> yields ''x² + y² - y = 0''
 +
:*<code><nowiki>OsculatingCircle((1, 0), Curve(cos(t), sin(2t), t, 0, 2π))</nowiki></code> yields ''x² + y² + 6x = 7''
 +
:*<code><nowiki>OsculatingCircle((-1, 0), Conic({1, 1, 1, 2, 2, 3}))</nowiki></code> yields ''x² + y² + 2x + 1y = -1''</div>}}
 +
 
 +
{{note| 1=<div>
 +
* This command is for 2D objects only. For 3D, you can make a custom tool for example https://www.geogebra.org/m/tan7dxjt
 +
</div>}}

Latest revision as of 16:15, 28 September 2019


OsculatingCircle( <Point>, <Function> )
Yields the osculating circle of the function in the given point.
Example: OsculatingCircle((0, 0), x^2) yields x² + y² - y = 0.
OsculatingCircle( <Point>, <Curve> )
Yields the osculating circle of the curve in the given point.
Example: OsculatingCircle((1, 0), Curve(cos(t), sin(2t), t, 0, 2π)) yields x² + y² + 6x = 7.


OsculatingCircle( <Point>, <Object> )
Yields the osculating circle of the object (function, curve, conic) in the given point.
Examples:
  • OsculatingCircle((0, 0), x^2) yields x² + y² - y = 0
  • OsculatingCircle((1, 0), Curve(cos(t), sin(2t), t, 0, 2π)) yields x² + y² + 6x = 7
  • OsculatingCircle((-1, 0), Conic({1, 1, 1, 2, 2, 3})) yields x² + y² + 2x + 1y = -1


Note:
© 2024 International GeoGebra Institute