Mod Command

From GeoGebra Manual
Jump to: navigation, search



Mod[ <Dividend Number>, <Divisor Number> ]
Yields the remainder when dividend number is divided by divisor number.
Example: Mod[9, 4] yields 1.
Mod[ <Dividend Polynomial>, <Divisor Polynomial> ]
Yields the remainder when the dividend polynomial is divided by the divisor polynomial.
Example: Mod[x^3 + x^2 + x + 6, x^2 - 3] yields 4 x + 9.

CAS Syntax

Mod[ <Dividend Number>, <Divisor Number> ]
Yields the remainder when dividend number is divided by divisor number.
Example: Mod[9, 4] yields 1.
Mod[ <Dividend Polynomial>, <Divisor Polynomial> ]
Yields the remainder when the dividend polynomial is divided by the divisor polynomial.
Example: Mod[x^3 + x^2 + x + 6, x^2 - 3] yields 4 x + 9.


Note:

If you want a function to do this, you can define it yourself eg mod(x, y) = y (x / y - floor(x / y))

© 2022 International GeoGebra Institute