# Difference between revisions of "Mod Command"

From GeoGebra Manual

(If you want a function to do this, you can define it yourself eg <code>mod(x, y) = y (x / y - floor(x / y))</code>) |
m |
||

Line 1: | Line 1: | ||

− | <noinclude>{{Manual Page|version= | + | <noinclude>{{Manual Page|version=5.0}}</noinclude> |

{{command|cas=true|algebra}} | {{command|cas=true|algebra}} | ||

;Mod[ <Dividend Number>, <Divisor Number> ] | ;Mod[ <Dividend Number>, <Divisor Number> ] |

## Revision as of 06:52, 30 July 2015

- Mod[ <Dividend Number>, <Divisor Number> ]
- Yields the remainder when dividend number is divided by divisor number.
**Example:**`Mod[9, 4]`

yields*1*.

- Mod[ <Dividend Polynomial>, <Divisor Polynomial> ]
- Yields the remainder when the dividend polynomial is divided by the divisor polynomial.
**Example:**`Mod[x^3 + x^2 + x + 6, x^2 - 3]`

yields*4 x + 9*.

## CAS Syntax

- Mod[ <Dividend Number>, <Divisor Number> ]
- Yields the remainder when dividend number is divided by divisor number.
**Example:**`Mod[9, 4]`

yields*1*.

- Mod[ <Dividend Polynomial>, <Divisor Polynomial> ]
- Yields the remainder when the dividend polynomial is divided by the divisor polynomial.
**Example:**`Mod[x^3 + x^2 + x + 6, x^2 - 3]`

yields*4 x + 9*.

**Note:**

If you want a function to do this, you can define it yourself eg `mod(x, y) = y (x / y - floor(x / y))`