Difference between revisions of "Invert Command"

From GeoGebra Manual
Jump to: navigation, search
Line 16: Line 16:
 
\end{pmatrix}
 
\end{pmatrix}
 
</math>.</div>}}
 
</math>.</div>}}
 +
 
{{betamanual|version=4.2|
 
{{betamanual|version=4.2|
 
1=; Invert[ <Function> ]
 
1=; Invert[ <Function> ]
 
: Returns the inverse of the function.  
 
: Returns the inverse of the function.  
{{Note|1=The function must contain just one 'x' and no account is taken of domain or range, eg for f(x)=x^2 or f(x) = sin(x). If there is more than one 'x' in the function you may be able to invert it like this: <code>Invert[ PartialFractions[(x+1)/(x+2)] ]</code> or this <code>Invert[ CompleteSquare[x^2+2x+1] ]</code>}}
+
{{Note|1=The function must contain just one ''x'' and no account is taken of domain or range, eg for f(x)=x^2 or f(x) = sin(x).  
 +
If there is more than one ''x'' in the function another command might help you:
 +
:{{example|1=<div><code><nowiki>Invert[PartialFractions[(x+1)/(x+2)]]</nowiki></code> or <code><nowiki>Invert[CompleteSquare[x^2+2x+1]]</nowiki></code> gives you the inverse of the function.</div>}}
 +
}}
 
}}
 
}}

Revision as of 16:19, 25 June 2012


Invert[Matrix]
Inverts the given matrix.
Example:
Invert[{{1, 2}, {3, 4}}] gives you the inverse matrix

\begin{pmatrix} -2 & 1\\ 1.5 & -0.5 \end{pmatrix}

.

CAS Syntax

Invert[Matrix]
Inverts the given matrix.
Example:
Invert[{{a, b}, {c, d}}] gives you the inverse matrix

\begin{pmatrix} \frac{d}{a* d- b* c} & \frac{-b}{a* d- b* c}\\ \frac{-c}{a* d- b* c}& \frac{a}{ a* d- b* c} \end{pmatrix}

.


© 2021 International GeoGebra Institute