Difference between revisions of "Invert Command"

From GeoGebra Manual
Jump to: navigation, search
m
(changed CAS syntax description)
Line 3: Line 3:
 
:Inverts the given matrix.
 
:Inverts the given matrix.
 
:{{example|1=<code><nowiki>Invert[{{1, 2}, {3, 4}}]</nowiki></code> yields <math>\begin{pmatrix}-2 & 1\\1.5 & -0.5\end{pmatrix}</math>, the inverse matrix of <math>\begin{pmatrix}1 & 2\\3 & 4\end{pmatrix}</math>.}}
 
:{{example|1=<code><nowiki>Invert[{{1, 2}, {3, 4}}]</nowiki></code> yields <math>\begin{pmatrix}-2 & 1\\1.5 & -0.5\end{pmatrix}</math>, the inverse matrix of <math>\begin{pmatrix}1 & 2\\3 & 4\end{pmatrix}</math>.}}
 +
{{note|In the [[File:Menu view cas.svg|link=|16px]] [[CAS_View|CAS View]] undefiened variables are allowed too.
 +
:{{example|1=<div><code><nowiki>Invert[{{a, b}, {c, d}}]</nowiki></code> yields <math>\begin{pmatrix}\frac{d}{ad- bc} & \frac{-b}{ad- bc}\\\frac{-c}{ad- bc}& \frac{a}{ ad- bc}\end{pmatrix}</math>, the inverse matrix of <math>\begin{pmatrix}a & b\\c & d\end{pmatrix}</math>.</div>}}
 +
}}
 
;Invert[ <Function> ]
 
;Invert[ <Function> ]
 
:Gives the inverse of the function.  
 
:Gives the inverse of the function.  
Line 8: Line 11:
 
:{{note|1=<div>The function must contain just one ''x'' and no account is taken of domain or range, for example for f(x) = x^2 or f(x) = sin(x). <br>If there is more than one ''x'' in the function another command might help you:</div>
 
:{{note|1=<div>The function must contain just one ''x'' and no account is taken of domain or range, for example for f(x) = x^2 or f(x) = sin(x). <br>If there is more than one ''x'' in the function another command might help you:</div>
 
::{{example|1=<div>Both <code><nowiki>Invert[PartialFractions[(x + 1) / (x + 2)]]</nowiki></code> and <code><nowiki>Invert[CompleteSquare[x^2 + 2 x + 1]]</nowiki></code> yield the inverse functions.</div>}}}}
 
::{{example|1=<div>Both <code><nowiki>Invert[PartialFractions[(x + 1) / (x + 2)]]</nowiki></code> and <code><nowiki>Invert[CompleteSquare[x^2 + 2 x + 1]]</nowiki></code> yield the inverse functions.</div>}}}}
==CAS Syntax==
 
;Invert[ <Matrix> ]
 
:Inverts the given matrix.
 
:{{example|1=<div><code><nowiki>Invert[{{a, b}, {c, d}}]</nowiki></code> yields <math>\begin{pmatrix}\frac{d}{ad- bc} & \frac{-b}{ad- bc}\\\frac{-c}{ad- bc}& \frac{a}{ ad- bc}\end{pmatrix}</math>, the inverse matrix of <math>\begin{pmatrix}a & b\\c & d\end{pmatrix}</math>.</div>}}
 
;Invert[ <Function> ]
 
:Gives the inverse of the function.
 
:{{examples|1=<div>
 
:*<code><nowiki>Invert[(x + 1) / (x + 2)]</nowiki></code> yields ''<math>\frac{-2x + 1}{x - 1}</math>''.
 
:*<code><nowiki>Invert[x^2 + 2 x + 1]</nowiki></code> yields ''<math>\sqrt x - 1</math>''.</div>}}
 
 
:{{note|1=In the [[File:Menu view cas.svg|link=|16px]] [[CAS_View|CAS View]], the command also works if the function contains more than one ''x''.}}
 
:{{note|1=In the [[File:Menu view cas.svg|link=|16px]] [[CAS_View|CAS View]], the command also works if the function contains more than one ''x''.}}

Revision as of 12:00, 1 October 2015


Invert[ <Matrix> ]
Inverts the given matrix.
Example: Invert[{{1, 2}, {3, 4}}] yields \begin{pmatrix}-2 & 1\\1.5 & -0.5\end{pmatrix}, the inverse matrix of \begin{pmatrix}1 & 2\\3 & 4\end{pmatrix}.
Note: In the Menu view cas.svg CAS View undefiened variables are allowed too.
Example:
Invert[{{a, b}, {c, d}}] yields \begin{pmatrix}\frac{d}{ad- bc} & \frac{-b}{ad- bc}\\\frac{-c}{ad- bc}& \frac{a}{ ad- bc}\end{pmatrix}, the inverse matrix of \begin{pmatrix}a & b\\c & d\end{pmatrix}.
Invert[ <Function> ]
Gives the inverse of the function.
Example:
Invert[sin(x)] yields asin(x).
Note:
The function must contain just one x and no account is taken of domain or range, for example for f(x) = x^2 or f(x) = sin(x).
If there is more than one x in the function another command might help you:
Example:
Both Invert[PartialFractions[(x + 1) / (x + 2)]] and Invert[CompleteSquare[x^2 + 2 x + 1]] yield the inverse functions.
Note: In the Menu view cas.svg CAS View, the command also works if the function contains more than one x.
© 2024 International GeoGebra Institute