# Difference between revisions of "InverseLogNormal Command"

From GeoGebra Manual

Line 1: | Line 1: | ||

<noinclude>{{Manual Page|version=4.2}}</noinclude> | <noinclude>{{Manual Page|version=4.2}}</noinclude> | ||

{{command|probability}} | {{command|probability}} | ||

− | ;InverseLogNormal[ <Mean | + | ;InverseLogNormal[ <Mean>, <Standard Deviation>, <Probability> ] |

− | :Computes the inverse of cumulative distribution function of the [[w:Log-normal_distribution| | + | :Computes the inverse of cumulative distribution function of the [[w:Log-normal_distribution|log-normal distribution]] at probability ''p'', where the log-normal distribution is given by mean ''μ'' and standard devation ''σ''. |

− | :In other words, it finds ''t'' such that ''P( | + | :In other words, it finds ''t'' such that ''P(X ≤ t) = p'', where ''X'' is a log-normal random variable. |

− | : | + | :Probability ''p'' must be from [''0, 1'']. |

− | :{{Examples|1=< | + | :{{Examples|1=<div> |

+ | :*<code><nowiki>InverseLogNormal[10, 20, 1/3]</nowiki></code> computes ''3.997''. | ||

+ | :*<code><nowiki>InverseLogNormal[1000, 2, 1]</nowiki></code> computes <math> \infty </math>.</div>}} |

## Revision as of 10:18, 5 September 2013

- InverseLogNormal[ <Mean>, <Standard Deviation>, <Probability> ]
- Computes the inverse of cumulative distribution function of the log-normal distribution at probability
*p*, where the log-normal distribution is given by mean*μ*and standard devation*σ*. - In other words, it finds
*t*such that*P(X ≤ t) = p*, where*X*is a log-normal random variable. - Probability
*p*must be from [*0, 1*]. **Examples:**`InverseLogNormal[10, 20, 1/3]`

computes*3.997*.`InverseLogNormal[1000, 2, 1]`

computes \infty .