Difference between revisions of "InverseLogNormal Command"

From GeoGebra Manual
Jump to: navigation, search
m
m (Text replace - ";(.*)\[(.*)\]" to ";$1($2)")
Line 1: Line 1:
 
<noinclude>{{Manual Page|version=5.0}}</noinclude> {{command|probability}}
 
<noinclude>{{Manual Page|version=5.0}}</noinclude> {{command|probability}}
;InverseLogNormal[ <Mean>, <Standard Deviation>, <Probability> ]
+
;InverseLogNormal( <Mean>, <Standard Deviation>, <Probability> )
 
:Computes the inverse of cumulative distribution function of the [[w:Log-normal_distribution|log-normal distribution]] at probability ''p'', where the log-normal distribution is given by mean ''μ'' and standard devation ''σ''.  
 
:Computes the inverse of cumulative distribution function of the [[w:Log-normal_distribution|log-normal distribution]] at probability ''p'', where the log-normal distribution is given by mean ''μ'' and standard devation ''σ''.  
 
:In other words, it finds ''t'' such that ''P(X ≤ t) = p'', where ''X'' is a log-normal random variable.  
 
:In other words, it finds ''t'' such that ''P(X ≤ t) = p'', where ''X'' is a log-normal random variable.  

Revision as of 17:15, 7 October 2017


InverseLogNormal( <Mean>, <Standard Deviation>, <Probability> )
Computes the inverse of cumulative distribution function of the log-normal distribution at probability p, where the log-normal distribution is given by mean μ and standard devation σ.
In other words, it finds t such that P(X ≤ t) = p, where X is a log-normal random variable.
Probability p must be from [0, 1].
Examples:
  • InverseLogNormal[10, 20, 1/3] computes 3.997.
  • InverseLogNormal[1000, 2, 1] computes \infty .
© 2021 International GeoGebra Institute