Difference between revisions of "Exponential Command"

From GeoGebra Manual
Jump to: navigation, search
m
Line 11: Line 11:
 
;Exponential[ <Lambda>, <Variable Value> ]
 
;Exponential[ <Lambda>, <Variable Value> ]
 
:Calculates the value of cumulative distribution function of exponential distribution at variable value ''v'', i.e. the probability ''P(X ≤ v)'' where ''X'' is a random variable with Exponential distribution with parameter ''lambda''.
 
:Calculates the value of cumulative distribution function of exponential distribution at variable value ''v'', i.e. the probability ''P(X ≤ v)'' where ''X'' is a random variable with Exponential distribution with parameter ''lambda''.
:{{example| 1=<div><code><nowiki>Exponential[2, 1]</nowiki></code> yields ''<math>\{1 - frac{1}{e^{2} }} </math>'', which is approximately  ''0.86''.</div>}}
+
:{{example| 1=<div><code><nowiki>Exponential[2, 1]</nowiki></code> yields ''<math>1 - \frac{1}{e^{2} } </math>'', which is approximately  ''0.86''.</div>}}

Revision as of 10:44, 23 July 2015



Exponential[ <Lambda>, x ]
Creates probability density function (pdf) of exponential distribution with parameter lambda.
Exponential[ <Lambda>, x, <Boolean Cumulative> ]
If Cumulative is true, creates cumulative distribution function (cdf) of exponential distribution, otherwise creates pdf of Exponential distribution.
Exponential[ <Lambda>, <Variable Value> ]
Calculates the value of cumulative distribution function of Exponential distribution at variable value v, i.e. the probability P(X ≤ v) where X is a random variable with Exponential distribution with parameter lambda.
Note: Returns the probability for a given x-coordinate's value (or area under the Exponential distribution curve to the left of the given x-coordinate).

CAS Syntax

Exponential[ <Lambda>, <Variable Value> ]
Calculates the value of cumulative distribution function of exponential distribution at variable value v, i.e. the probability P(X ≤ v) where X is a random variable with Exponential distribution with parameter lambda.
Example:
Exponential[2, 1] yields 1 - \frac{1}{e^{2} } , which is approximately 0.86.
© 2022 International GeoGebra Institute