Difference between revisions of "Ellipse Command"

From GeoGebra Manual
Jump to: navigation, search
m (Text replace - "<div class="box info"> 48px|left This page is part of the official manual for print and pdf. For structural reasons normal users can't edit this page. If you found any errors on this page please contact )
Line 1: Line 1:
 
<noinclude>{{Manual Page|version=4.2}}</noinclude>
 
<noinclude>{{Manual Page|version=4.2}}</noinclude>
 
{{command|conic}}
 
{{command|conic}}
; Ellipse[Point F, Point G, Number a] : Creates an ellipse with focal points ''F'' and ''G'' and semimajor axis length ''a''.
+
; Ellipse[ <Focus>, <Focus>, <Semimajor Axis Length> ]  
; Ellipse[Point F, Point G, Segment] : Creates an ellipse with focal points ''F'' and ''G'' where the length of the semimajor axis equals the length of the given segment.
+
: Creates an ellipse with two focal points and semimajor axis length.
; Ellipse[Point F, Point G, Point A]: Creates an ellipse with foci ''F'' and ''G'' passing through point ''A''.
+
:{{example|1=<div><code><nowiki>Ellipse[(0, 1), (1, 1), 1]</nowiki></code> yields ''12x² + 16y² - 12x - 32y = -7''.</div>}}
 
+
; Ellipse[ <Focus>, <Focus>, <Segment> ]  
 +
: Creates an ellipse with two focal points, where the length of the semimajor axis equals the length of the given segment.
 +
:{{example|1=<div>Let ''s = Segment[(0,1), (2,1)]''. <div><code><nowiki>Ellipse[(0, 1), (2, 1), s]</nowiki></code> yields ''3x² + 4y² - 6x - 8y = 5''.</div></div>}}
 +
; Ellipse[ <Focus>, <Focus>, <Point> ]
 +
: Creates an ellipse with two focal points passing through a given point.
 +
:{{example|1=<div><code><nowiki>Ellipse[(0, 1), (2, 1), (1,2)]</nowiki></code> yields ''1x² + 2y² - 2x - 4y = -1''.</div>}}
 
{{Note| See also [[Ellipse Tool|Ellipse]] tool .}}
 
{{Note| See also [[Ellipse Tool|Ellipse]] tool .}}

Revision as of 10:52, 21 May 2013



Ellipse[ <Focus>, <Focus>, <Semimajor Axis Length> ]
Creates an ellipse with two focal points and semimajor axis length.
Example:
Ellipse[(0, 1), (1, 1), 1] yields 12x² + 16y² - 12x - 32y = -7.
Ellipse[ <Focus>, <Focus>, <Segment> ]
Creates an ellipse with two focal points, where the length of the semimajor axis equals the length of the given segment.
Example:
Let s = Segment[(0,1), (2,1)].
Ellipse[(0, 1), (2, 1), s] yields 3x² + 4y² - 6x - 8y = 5.
Ellipse[ <Focus>, <Focus>, <Point> ]
Creates an ellipse with two focal points passing through a given point.
Example:
Ellipse[(0, 1), (2, 1), (1,2)] yields 1x² + 2y² - 2x - 4y = -1.
Note: See also Ellipse tool .
© 2020 International GeoGebra Institute