Difference between revisions of "Dimension Command"

From GeoGebra Manual
Jump to: navigation, search
m (command syntax: changed [ ] into ( ))
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<noinclude>{{Manual Page|version=4.2}}[[Category:Manual (official)|{{PAGENAME}}]]</noinclude>
+
<noinclude>{{Manual Page|version=5.0}}[[Category:Manual (official)|{{PAGENAME}}]]</noinclude>
 
{{command|vector-matrix}}
 
{{command|vector-matrix}}
;Dimension[ <Object> ]
+
;Dimension( <Object> )
 
:Gives the dimension of a vector or a Matrix.
 
:Gives the dimension of a vector or a Matrix.
:{{example|1=<div><code><nowiki>Dimension[{1, 2, 0, -4, 3}]</nowiki></code> yields ''5''.</div>}}
+
:{{example|1=<div><code><nowiki>Dimension({1, 2, 0, -4, 3})</nowiki></code> yields ''5''.</div>}}
:{{example|1=<div><code><nowiki>Dimension[{{1, 2}, {3, 4}, {5, 6}}]</nowiki></code> yields ''{3, 2}''.</div>}}
+
:{{example|1=<div><code><nowiki>Dimension({{1, 2}, {3, 4}, {5, 6}})</nowiki></code> yields ''{3, 2}''.</div>}}
 
==CAS Syntax==
 
==CAS Syntax==
;Dimension[ <Object> ]
+
;Dimension( <Object> )
 
:Gives the dimension of a vector or  matrix.
 
:Gives the dimension of a vector or  matrix.
:{{example|1=<div><code><nowiki>Dimension[{1, 2, 0, -4, 3}]</nowiki></code> yields ''5''.</div>}}
+
:{{example|1=<div><code><nowiki>Dimension({1, 2, 0, -4, 3})</nowiki></code> yields ''5''.</div>}}
:{{example|1=<div><code><nowiki>Dimension[{{a, b}, {c, d}, {e, f}}]</nowiki></code> yields ''{3, 2}''.</div>}}
+
:{{example|1=<div><code><nowiki>Dimension({{a, b}, {c, d}, {e, f}})</nowiki></code> yields ''{3, 2}''.</div>}}

Latest revision as of 17:33, 29 September 2017


Dimension( <Object> )
Gives the dimension of a vector or a Matrix.
Example:
Dimension({1, 2, 0, -4, 3}) yields 5.
Example:
Dimension({{1, 2}, {3, 4}, {5, 6}}) yields {3, 2}.

CAS Syntax

Dimension( <Object> )
Gives the dimension of a vector or matrix.
Example:
Dimension({1, 2, 0, -4, 3}) yields 5.
Example:
Dimension({{a, b}, {c, d}, {e, f}}) yields {3, 2}.
© 2024 International GeoGebra Institute