Difference between revisions of "Conic Command"

From GeoGebra Manual
Jump to: navigation, search
m
m
Line 1: Line 1:
<noinclude>{{Manual Page|version=5.0}}</noinclude>
+
<noinclude>{{Manual Page|version=5.0}}</noinclude>{{command|conic}}
{{command|conic}}
 
 
; Conic[ <Point>, <Point>, <Point>, <Point>, <Point> ]
 
; Conic[ <Point>, <Point>, <Point>, <Point>, <Point> ]
 
:Returns a conic section through the five given points.
 
:Returns a conic section through the five given points.
 
:{{example|1=<code><nowiki>Conic[(0, -4), (2, 4), (3,1), (-2,3), (-3,-1)]</nowiki></code> yields ''151x² - 37x y + 72y² + 14x - 42y = 1320 ''.}}
 
:{{example|1=<code><nowiki>Conic[(0, -4), (2, 4), (3,1), (-2,3), (-3,-1)]</nowiki></code> yields ''151x² - 37x y + 72y² + 14x - 42y = 1320 ''.}}
: {{Note| If four of the points lie on one line the conic section is not defined.}}
+
: {{Note| If four of the points lie on one line, then the conic section is not defined.}}
  
 
;Conic[ <Number a>, <Number b>, <Number c>, <Number d>, <Number e>, <Number f> ]
 
;Conic[ <Number a>, <Number b>, <Number c>, <Number d>, <Number e>, <Number f> ]

Revision as of 14:17, 26 August 2015


Conic[ <Point>, <Point>, <Point>, <Point>, <Point> ]
Returns a conic section through the five given points.
Example: Conic[(0, -4), (2, 4), (3,1), (-2,3), (-3,-1)] yields 151x² - 37x y + 72y² + 14x - 42y = 1320 .
Note: If four of the points lie on one line, then the conic section is not defined.
Conic[ <Number a>, <Number b>, <Number c>, <Number d>, <Number e>, <Number f> ]
Returns a conic section a\cdot x^2+d\cdot xy+b\cdot y^2+e\cdot x+f\cdot y=-c.
Example: Conic[2, 3, -1, 4, 2, -3] yields 2x² + 4x y + 3y² + 2x - 3y = 1 .
Note: See also Mode conic5.svg Conic through 5 Points tool and Coefficients command.
© 2021 International GeoGebra Institute