# Difference between revisions of "Conic Command"

From GeoGebra Manual

(examples and tool image added) |
|||

Line 3: | Line 3: | ||

; Conic[ <Point>, <Point>, <Point>, <Point>, <Point> ] | ; Conic[ <Point>, <Point>, <Point>, <Point>, <Point> ] | ||

:Returns a conic section through the five given points. | :Returns a conic section through the five given points. | ||

+ | :{{example|1=<code><nowiki>Conic[(0, -4), (2, 4), (3,1), (-2,3), (-3,-1)]</nowiki></code> yields ''151x² - 37x y + 72y² + 14x - 42y = 1320 ''.}} | ||

: {{Note| If four of the points lie on one line the conic section is not defined.}} | : {{Note| If four of the points lie on one line the conic section is not defined.}} | ||

+ | |||

;Conic[ <Number a>, <Number b>, <Number c>, <Number d>, <Number e>, <Number f> ] | ;Conic[ <Number a>, <Number b>, <Number c>, <Number d>, <Number e>, <Number f> ] | ||

:Returns a conic section <math>a\cdot x^2+b\cdot y^2+c+d\cdot x\cdot y+e\cdot x+f\cdot y=0</math>. | :Returns a conic section <math>a\cdot x^2+b\cdot y^2+c+d\cdot x\cdot y+e\cdot x+f\cdot y=0</math>. | ||

− | + | :{{example|1=<code><nowiki>Conic[2, 3, -1, 4, 2, 3]</nowiki></code> yields '' 2x² + 4x y + 3y² + 2x - 3y = 1 ''.}} | |

− | {{Note| See also [[Conic through Five Points Tool|Conic through Five Points]] tool and [[Coefficients Command]].}} | + | {{Note| See also [[Image:Tool_Conic_5Points.gif]] [[Conic through Five Points Tool|Conic through Five Points]] tool and [[Coefficients Command|Coefficients]] command.}} |

## Revision as of 12:24, 13 June 2013

- Conic[ <Point>, <Point>, <Point>, <Point>, <Point> ]
- Returns a conic section through the five given points.
**Example:**`Conic[(0, -4), (2, 4), (3,1), (-2,3), (-3,-1)]`

yields*151x² - 37x y + 72y² + 14x - 42y = 1320*.

**Note:**If four of the points lie on one line the conic section is not defined.

- Conic[ <Number a>, <Number b>, <Number c>, <Number d>, <Number e>, <Number f> ]
- Returns a conic section a\cdot x^2+b\cdot y^2+c+d\cdot x\cdot y+e\cdot x+f\cdot y=0.
**Example:**`Conic[2, 3, -1, 4, 2, 3]`

yields*2x² + 4x y + 3y² + 2x - 3y = 1*.

**Note:**See also Conic through Five Points tool and Coefficients command.