# Difference between revisions of "ComplexRoot Command"

From GeoGebra Manual

(fixed wrong equation) |
|||

Line 1: | Line 1: | ||

<noinclude>{{Manual Page|version=4.0}}</noinclude> | <noinclude>{{Manual Page|version=4.0}}</noinclude> | ||

{{command|function}} | {{command|function}} | ||

− | ;ComplexRoot[ <Polynomial> ] | + | ;ComplexRoot[<Polynomial>] |

+ | :Finds the complex roots of a given polynomial in x. Points are created in [[Graphics View]]. | ||

− | |||

==CAS Syntax== | ==CAS Syntax== | ||

− | ;ComplexRoot[ <Polynomial> ] | + | ;ComplexRoot[<Polynomial>] |

− | Finds the complex roots of a given polynomial in x. | + | :Finds the complex roots of a given polynomial in x. |

:{{example|1=<div><code><nowiki>ComplexRoot[x^2 + 1]</nowiki></code> gives ''{x = ί, x = -ί}'', the complex roots of ''x<sup>2</sup> + 1''.</div>}} | :{{example|1=<div><code><nowiki>ComplexRoot[x^2 + 1]</nowiki></code> gives ''{x = ί, x = -ί}'', the complex roots of ''x<sup>2</sup> + 1''.</div>}} | ||

{{note| 1=<div> | {{note| 1=<div> |

## Revision as of 11:41, 8 August 2011

- ComplexRoot[<Polynomial>]
- Finds the complex roots of a given polynomial in x. Points are created in Graphics View.

## CAS Syntax

- ComplexRoot[<Polynomial>]
- Finds the complex roots of a given polynomial in x.
**Example:**`ComplexRoot[x^2 + 1]`

gives*{x = ί, x = -ί}*, the complex roots of*x*.^{2}+ 1

**Note:**

- The complex ί is obtained by pressing ALT + i. See also Complex Command.
- See also CSolve Command.