Difference between revisions of "Comments:LaTeX-code for the most common formulas"

From GeoGebra Manual
Jump to: navigation, search
Line 12: Line 12:
 
  m=\frac{y_2-y_1}{x_2-x_1}
 
  m=\frac{y_2-y_1}{x_2-x_1}
 
::<math>m=\frac{y_2-y_1}{x_2-x_1}</math>
 
::<math>m=\frac{y_2-y_1}{x_2-x_1}</math>
* ""Quadratic Equation:""
+
* '''Quadratic Equation:'''
 
  a x^2\; +\; b x\; +\; c\; =\; 0
 
  a x^2\; +\; b x\; +\; c\; =\; 0
 
::<math>a x^2\; +\; b x\; +\; c\; =\; 0</math>
 
::<math>a x^2\; +\; b x\; +\; c\; =\; 0</math>
*""Vertex Form::""
+
* '''Vertex Form::'''
 
  f(x)\; =\; a(x\; -\; h)^2\; +\; k
 
  f(x)\; =\; a(x\; -\; h)^2\; +\; k
 
::<math>f(x)\; =\; a(x\; -\; h)^2\; +\; k</math>
 
::<math>f(x)\; =\; a(x\; -\; h)^2\; +\; k</math>
*""Factored Form::""
+
* '''Factored Form::'''
 
  f(x)\; =\; (x\; +\; a)\;(x\; +\; b)
 
  f(x)\; =\; (x\; +\; a)\;(x\; +\; b)
 
::<math>f(x)\; =\; (x\; +\; a)\;(x\; +\; b)</math>
 
::<math>f(x)\; =\; (x\; +\; a)\;(x\; +\; b)</math>
*""Quadratic Formula::""
+
* '''Quadratic Formula::'''
 
  x\; =\; \frac {-b\; \pm\; \sqrt {b^2\; -\; 4ac}}{2a}
 
  x\; =\; \frac {-b\; \pm\; \sqrt {b^2\; -\; 4ac}}{2a}
 
::<math>x\; =\; \frac {-b\; \pm\; \sqrt {b^2\; -\; 4ac}}{2a}</math>
 
::<math>x\; =\; \frac {-b\; \pm\; \sqrt {b^2\; -\; 4ac}}{2a}</math>
*""Cubic Equation::""
+
* '''Cubic Equation::'''
 
  a x^3\; +\; b x^2\; +\; c x\; +\; d\; =\; 0
 
  a x^3\; +\; b x^2\; +\; c x\; +\; d\; =\; 0
 
::<math>a x^3\; +\; b x^2\; +\; c x\; +\; d\; =\; 0</math>
 
::<math>a x^3\; +\; b x^2\; +\; c x\; +\; d\; =\; 0</math>
*""Cubic Vertex Form::""
+
* '''Cubic Vertex Form::'''
 
  f(x)\; =\; a(x\; -\; h)^3\; +\; k
 
  f(x)\; =\; a(x\; -\; h)^3\; +\; k
 
::<math>f(x)\; =\; a(x\; -\; h)^3\; +\; k</math>
 
::<math>f(x)\; =\; a(x\; -\; h)^3\; +\; k</math>
*""Basic Trigonometry::""
+
* '''Basic Trigonometry::'''
 
  sin A = \frac {opp}{hyp} = \frac {a}{c} = (a/c)
 
  sin A = \frac {opp}{hyp} = \frac {a}{c} = (a/c)
 
::<math>sin A = \frac {opp}{hyp} = \frac {a}{c} = (a/c)</math>
 
::<math>sin A = \frac {opp}{hyp} = \frac {a}{c} = (a/c)</math>
*""Limit forms::""
+
f(x)\; =\; a\; sin\; b\;(x\; -\; h)\; +\; k
 +
::<math>f(x)\; =\; a\; sin\; b\;(x\; -\; h)\; +\; k</math>
 +
f(x)\; =\; a\; sin\; (B x + C) + k
 +
::<math>f(x)\; =\; a\; sin\; (B x + C) + k</math>
 +
b\;(x\; -\; h)\; = B\; \left( x\; -\; \frac {-C}{B} \right)
 +
::<math>b\;(x\; -\; h)\; = B\; \left( x\; -\; \frac {-C}{B} \right)</math>
 +
h\; = \frac {-C}{B}
 +
::<math>h\; = \frac {-C}{B}</math>
 +
* '''Limit forms::'''
 
  \lim\limits_{\substack{x \to ? \\x > ?} }
 
  \lim\limits_{\substack{x \to ? \\x > ?} }
 
::<math>\lim\limits_{\substack{x \to ? \\x > ?} }</math>
 
::<math>\lim\limits_{\substack{x \to ? \\x > ?} }</math>
Line 39: Line 47:
 
::<math>\lim\limits_{\substack{x \to ? \\x < ?} }</math>
 
::<math>\lim\limits_{\substack{x \to ? \\x < ?} }</math>
 
  \lim\limits_{x \to ?\infty}
 
  \lim\limits_{x \to ?\infty}
::<math>\lim\limits_{x \to \infty}$</math>
+
::<math>\lim\limits_{x \to \infty}</math>

Revision as of 00:58, 6 October 2011

If you have somewhere a very long formula, please share it with us. This will save time for everybody!

Design-Tip

  • A space before the formula leeds to the box around the line.
  • Don't hesitate it is not looking so good. That can be done by anybody else.
  • An easy solution to get the same look is to copy the lines of an other formula for you formula.

How to use the formulas

Just copy the text in the dotted box into you text-input-box. If the formula should be dynamic you need to insert the object at the place of the variable that is used here.

Formulas

  • Slope for a straight line:
m=\frac{y_2-y_1}{x_2-x_1}
m=\frac{y_2-y_1}{x_2-x_1}
  • Quadratic Equation:
a x^2\; +\; b x\; +\; c\; =\; 0
a x^2\; +\; b x\; +\; c\; =\; 0
  • Vertex Form::
f(x)\; =\; a(x\; -\; h)^2\; +\; k
f(x)\; =\; a(x\; -\; h)^2\; +\; k
  • Factored Form::
f(x)\; =\; (x\; +\; a)\;(x\; +\; b)
f(x)\; =\; (x\; +\; a)\;(x\; +\; b)
  • Quadratic Formula::
x\; =\; \frac {-b\; \pm\; \sqrt {b^2\; -\; 4ac}}{2a}
x\; =\; \frac {-b\; \pm\; \sqrt {b^2\; -\; 4ac}}{2a}
  • Cubic Equation::
a x^3\; +\; b x^2\; +\; c x\; +\; d\; =\; 0
a x^3\; +\; b x^2\; +\; c x\; +\; d\; =\; 0
  • Cubic Vertex Form::
f(x)\; =\; a(x\; -\; h)^3\; +\; k
f(x)\; =\; a(x\; -\; h)^3\; +\; k
  • Basic Trigonometry::
sin A = \frac {opp}{hyp} = \frac {a}{c} = (a/c)
sin A = \frac {opp}{hyp} = \frac {a}{c} = (a/c)
f(x)\; =\; a\; sin\; b\;(x\; -\; h)\; +\; k
f(x)\; =\; a\; sin\; b\;(x\; -\; h)\; +\; k
f(x)\; =\; a\; sin\; (B x + C) + k
f(x)\; =\; a\; sin\; (B x + C) + k
b\;(x\; -\; h)\; = B\; \left( x\; -\; \frac {-C}{B} \right)
b\;(x\; -\; h)\; = B\; \left( x\; -\; \frac {-C}{B} \right)
h\; = \frac {-C}{B}
h\; = \frac {-C}{B}
  • Limit forms::
\lim\limits_{\substack{x \to ? \\x > ?} }
\lim\limits_{\substack{x \to ? \\x > ?} }
\lim\limits_{\substack{x \to ? \\x < ?} }
\lim\limits_{\substack{x \to ? \\x < ?} }
\lim\limits_{x \to ?\infty}
\lim\limits_{x \to \infty}
© 2022 International GeoGebra Institute