# Difference between revisions of "Comments:Complex Numbers"

From GeoGebra Manual

m (r2.7.1+) (robot Adding: tr:Karmaşık Sayılar) |
(IsComplex workaround) |
||

Line 1: | Line 1: | ||

<!-- DO NOT EDIT -->{{:Manual:{{PAGENAME}}}}<!-- END: DO NOT EDIT --> | <!-- DO NOT EDIT -->{{:Manual:{{PAGENAME}}}}<!-- END: DO NOT EDIT --> | ||

+ | {{note|1= | ||

+ | Sometimes you may want to check if a number is complex or real, as function such as x() and y() do not work with real numbers. As there is no such command as <code>IsComplex</code> you currently have to employ a small trick to check if the number <code>a</code> is complex: <code>complex = IsDefined[sqrt(a) + sqrt(-a)] ∧ (a ≠ 0)</code>. This works because just complex numbers have both positive and negative square roots (except for 0 which needs a special case).}} | ||

[[bs:Kompleksni brojevi]] | [[bs:Kompleksni brojevi]] |

## Revision as of 08:34, 29 May 2012

**Note:**Sometimes you may want to check if a number is complex or real, as function such as x() and y() do not work with real numbers. As there is no such command as

`IsComplex`

you currently have to employ a small trick to check if the number `a`

is complex: `complex = IsDefined[sqrt(a) + sqrt(-a)] ∧ (a ≠ 0)`

. This works because just complex numbers have both positive and negative square roots (except for 0 which needs a special case).bs:Kompleksni brojevi ca:Nombres complexos cs:Komplexní čísla da:Komplekse tal de:Komplexe Zahlen es:Números Complejos et:Kompleksarvud fa:اعداد مختلط fr:Nombres complexes hr:Kompleksni brojevi is:Tvinntölur it:Numeri complessi kk:Кешен сандар ko:복소수 lt:Kompleksiniai skaičiai mk:Комплексен Број pl:Liczby zespolone sk:Komplexné čísla sl:Kompleksna števila tr:Karmaşık Sayılar zh:複數