Difference between revisions of "Axes Command"

From GeoGebra Manual
Jump to: navigation, search
(command syntax: changed [ ] into ( ))
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<noinclude>{{Manual Page|version=4.2}}</noinclude>
+
<noinclude>{{Manual Page|version=5.0}}</noinclude>{{command|conic}}
{{command|conic}}
+
; Axes( <Conic> ): Returns the equations of the major and minor axes of a conic section.
; Axes[ <Conic> ]: Returns the equations of the major and minor axes of a conic section.
 
  
 +
:{{Note|1=See also [[MajorAxis Command|MajorAxis]] and [[MinorAxis Command|MinorAxis]] commands.}}
  
{{betamanual|version=5.0|;Axes[ <Quadric> ]
+
;Axes( <Quadric> )
:Create the 3 axes of a quadric.  
+
:Creates the 3 axes of the given quadric.  
:{{Example|1=<div><code>Axes[x^2 + y^2 = 3]</code> returns the three lines</div> ''a'': ''X'' = (0, 0, 0) + ''λ'' (1, 0, 0), ''b'': ''X'' = (0, 0, 0) + ''λ'' (0, 1, 0) and <div>''c'': ''X'' = (0, 0, 0) + ''λ'' (0, 0, 1)</div>}}
+
:{{Example|1=<div><code>Axes(x^2 + y^2 + z^2= 3)</code> returns the three lines</div> ''a'': ''X'' = (0, 0, 0) + ''λ'' (1, 0, 0), ''b'': ''X'' = (0, 0, 0) + ''λ'' (0, 1, 0) and ''c'': ''X'' = (0, 0, 0) + ''λ'' (0, 0, 1)}}
}}
+
:{{notes|1=Specifically:
 
+
:* if the given quadric is a ''cylinder'', the command yields the two axes of the bottom circle and the rotation axis.
:{{Note|1=See also [[MajorAxis Command|MajorAxis]] and [[MinorAxis Command|MinorAxis]] commands.}}
+
:* if the given quadric is a ''sphere'', the command yields the three axes parallel to the coordinate system axes.}}

Latest revision as of 15:26, 4 October 2017


Axes( <Conic> )
Returns the equations of the major and minor axes of a conic section.
Note: See also MajorAxis and MinorAxis commands.
Axes( <Quadric> )
Creates the 3 axes of the given quadric.
Example:
Axes(x^2 + y^2 + z^2= 3) returns the three lines
a: X = (0, 0, 0) + λ (1, 0, 0), b: X = (0, 0, 0) + λ (0, 1, 0) and c: X = (0, 0, 0) + λ (0, 0, 1)
Notes: Specifically:
  • if the given quadric is a cylinder, the command yields the two axes of the bottom circle and the rotation axis.
  • if the given quadric is a sphere, the command yields the three axes parallel to the coordinate system axes.
© 2024 International GeoGebra Institute