적분 명령

이동: 둘러보기, 검색
이 페이지는 공식 매뉴얼에서 출력과 pdf를 위한 부분입니다. 일반 사용자들은 이 페이지를 편집할 수 없습니다. 만일 이 페이지에서 오류를 발견하였으면, 연락하여 주시기 바랍니다.사용자에 의해 편집 가능한 버전으로 이동
적분 명령
이 글은 GeoGebra 명령 에 관한 것입니다.
명령 분류 (모든 명령)
Integral( <Function> )
Gives the indefinite integral with respect to the main variable.
예: Integral(x^3) yields x^4 \cdot 0.25.
Integral( <Function>, <Variable> )
Gives the partial integral with respect to the given variable.
예: Integral(x³+3x y, x) gives \frac{1}{4}x^4 + \frac{3}{2} x² y .
Integral( <Function>, <Start x-Value>, <End x-Value> )
Gives the definite integral over the interval [Start x-Value , End x-Value] with respect to the main variable.
노트: This command also shades the area between the function graph of f and the x-axis.
Integral( <Function>, <Start x-Value>, <End x-Value>, <Boolean Evaluate> )
Gives the definite integral of the function over the interval [Start x-Value , End x-Value] with respect to the main variable and shades the related area if Evaluate is true. In case Evaluate is false the related area is shaded but the integral value is not calculated.

CAS Syntax

In the CAS View undefined variables are allowed as input as well.

예: Integral(cos(a t), t) yields \frac{sin(a t)}{a} + c_1.

Furthermore, the following command is only available in the CAS View:

Integral( <Function>, <Variable>, <Start x-Value>, <End x-Value> )
Gives the definite integral over the interval [Start x-Value , End x-Value] with respect to the given variable.
예: Integral(cos(t), t, a, b) yields - sin(a) + sin(b).
노트:
• The answer isn't guaranteed to be continuous, eg Integral(floor(x)), that is the integral of the function ⌊x⌋ - in that case you can define your own function to use eg F(x)=(floor(x)² - floor(x))/2 + x floor(x) - floor(x)², i.e. the function \frac{⌊x⌋² - ⌊x⌋}{2} + x \cdot⌊x⌋ - ⌊x⌋²
• in some versions of GeoGebra, a numerical algorithm is used so integrating up to an asypmtote or similar eg Integral(ln(x), 0, 1) won't work. In this case try Integral(ln(x), 0, 1, false)
• GeoGebra
• Help
• Partners