NumerikusMegoldás parancs

A GeoGebra Manual wikiből
Accessories dictionary.png
Ez az oldal a hivatalos használati útmutató nyomtható és PDF-be menthető része. A felépítése miatt az egyszerű felhasználók ezt nem szerkeszthetik. Ha bármilyen hibát találna, kérjük, jelezze felénk.Ugrás a felhasználók által szerkeszthető változathoz.
Ez a parancs csak CAS nézetben érhető el..
NumerikusMegoldás[ <Egyenlet> ]
Kiszámítja az adott egyenlet numerikus megoldásait az x változóra.
Példa:
NumerikusMegoldás[cos(x) = x] eredménye {0.74} vagy {0.739085133215165} (a tizedesvessző utáni számjegyek száma a választott beállításon múlik.)
NumerikusMegoldás[ <Egyenlet>, <Változó> ]
Kiszámítja az adott egyenlet numerikus megoldásait a megadott ismeretlen változóra.
Példa:
NumerikusMegoldás[a^4 + 34a^3 = 34, a] eredménye a következő lista: {a = -34.0008649858, a = 0.9904738885}.


NumerikusMegoldás[ <Egyenlet>, <Változó=Kezdőérték> ]
Kiszámítja az adott egyenlet numerikus megoldásait az ismeretlen változóra, megadott kezdőértékkel.
Példa:
  • NumerikusMegoldás[cos(x) = x, x = 0] eredménye {0.74}
  • NumerikusMegoldás[a^4 + 34a^3 = 34, a = 3] eredménye a következő lista: {-34, 0.99}.
NumerikusMegoldás[ <Egyenletek listája>, <Változók listája> ]
Kiszámítja az adott egyenletrendszer numerikus megoldásait a megadott ismeretlen változókra.
Példa:
NumerikusMegoldás[{π / x = cos(x - 2y), 2 y - π = sin(x)}, {x = 3, y = 1.5}] eredménye a következő lista: {3.14, 1.57}
Jegyzet:
  • Ha nincsen kezdőérték megadva (pl. a = 3 vagy {x = 3, y = 1.5}), akkor előfordulhat, hogy a numerikus algoritmus csak nehezen, vagy egyáltalán nem talál megoldást (kezdőérték megadásával sem garantált az egyenlet megoldása).
  • A tizedesvessző utáni számjegyek száma a beállításoknál adható meg.
  • A π az Alt + p billentyűkombinációval érhető el.
  • Lásd a Megold és NumerikusanMegold parancsokat.
© 2020 International GeoGebra Institute