BaricentrikusGörbe parancs

A GeoGebra Manual wikiből
Accessories dictionary.png
Ez az oldal a hivatalos használati útmutató nyomtható és PDF-be menthető része. A felépítése miatt az egyszerű felhasználók ezt nem szerkeszthetik. Ha bármilyen hibát találna, kérjük, jelezze felénk.Ugrás a felhasználók által szerkeszthető változathoz.
BaricentrikusGörbe[ <Pont P>, <Pont Q>, <Pont R>, <Egyenlet A, B, C> ]
Creates implicit polynomial, whose equation in barycentric coordinates with respect to points P, Q, R is given by the fourth parameter; the barycentric coordinates are referred to as A, B, C.
Példa: If P, Q, R are points, TriangleCurve[P, Q, R, (A - B)*(B - C)*(C - A) = 0] gives a cubic curve consisting of the medians of the triangle PQR.
Példa: BaricentrikusGörbe[A, B, C, A*C = 1/8] creates a hyperbola such that tangent, through A or C, to this hyperbola splits triangle ABC in two parts of equal area.
Példa: BaricentrikusGörbe[A, B, C, A² + B² + C² - 2B C - 2C A - 2A B = 0] creates the Steiner inellipse of the triangle ABC, and BaricentrikusGörbe[A, B, C, B C + C A + A B = 0] creates the Steiner circumellipse of the triangle ABC.
Jegyzet: The input points can be called A, B or C, but in this case you cannot use e.g. x(A) in the equation, because A is interpreted as the barycentric coordinate.
© 2020 International GeoGebra Institute